有人能解释一下构建堆的复杂性吗?
将项插入到堆中是O(logn),并且插入被重复n/2次(剩余的是叶子,不能违反堆属性)。所以,我认为这意味着复杂性应该是O(n log n)。
换言之,对于我们“heapify”的每个项目,它有可能必须为堆的每个级别(即logn级别)过滤(即筛选)一次。
我错过了什么?
有人能解释一下构建堆的复杂性吗?
将项插入到堆中是O(logn),并且插入被重复n/2次(剩余的是叶子,不能违反堆属性)。所以,我认为这意味着复杂性应该是O(n log n)。
换言之,对于我们“heapify”的每个项目,它有可能必须为堆的每个级别(即logn级别)过滤(即筛选)一次。
我错过了什么?
当前回答
在构建堆的情况下,我们从高度开始,logn-1(其中logn是n个元素的树的高度)。对于高度为“h”的每个元素,我们将最大值设置为(logn-h)。
So total number of traversal would be:-
T(n) = sigma((2^(logn-h))*h) where h varies from 1 to logn
T(n) = n((1/2)+(2/4)+(3/8)+.....+(logn/(2^logn)))
T(n) = n*(sigma(x/(2^x))) where x varies from 1 to logn
and according to the [sources][1]
function in the bracket approaches to 2 at infinity.
Hence T(n) ~ O(n)
其他回答
你的分析是正确的。然而,它并不紧密。
要解释为什么构建堆是一个线性操作并不容易,您应该更好地阅读它。
这里可以看到对算法的详细分析。
主要思想是,在build_heap算法中,所有元素的实际堆化成本不是O(logn)。
当调用heapify时,运行时间取决于进程终止之前元素在树中向下移动的距离。换句话说,它取决于堆中元素的高度。在最坏的情况下,元素可能会一直下降到叶级别。
让我们一级一级地计算完成的工作。
在最底层,有2^(h)个节点,但我们没有对这些节点调用heapify,因此功为0。在下一级有2^(h−1)个节点,每个节点可能向下移动一级。在从底部开始的第3层,有2^(h−2)个节点,每个节点可能向下移动2层。
正如您所看到的,并不是所有的heapify操作都是O(logn),这就是为什么您会得到O(n)。
@bcorso已经证明了复杂性分析的证据。但为了那些还在学习复杂性分析的人,我想补充一下:
您最初错误的基础是对语句含义的误解,“插入堆需要O(logn)时间”。插入到堆中确实是O(logn),但您必须认识到n是插入过程中堆的大小。
在向堆中插入n个对象的情况下,第i次插入的复杂性为O(logn_i),其中n_i是插入i时堆的大小。只有最后一次插入的复杂度为O(log n)。
我真的很喜欢杰里米·韦斯特的解释。。。。这里给出了另一种非常容易理解的方法http://courses.washington.edu/css343/zander/NotesProbs/heapcomplexity
因为,buildheap依赖于使用依赖于heapify,而shiftdown方法依赖于所有节点的高度之和。因此,求出节点高度之和S=(2^i*(h-i))从i=0到i=h的总和,其中h=logn是树的高度求解s,我们得到s=2^(h+1)-1-(h+1)因为,n=2^(h+1)-1s=n-h-1=n-logn-1s=O(n),所以构建堆的复杂度是O(n)。
简短回答
使用Heapify()构建二进制堆需要O(n)时间。
当我们一个接一个地将元素添加到堆中,并在每一步都满足堆属性(最大堆或最小堆)时,总时间复杂度将为O(nlogn)。因为二进制堆的一般结构是一个完整的二进制树。因此,堆的高度为h=O(logn)。因此,元素在堆中的插入时间等于树的高度,即O(h)=O(logn)。对于n个元素,这将花费O(nlogn)时间。
现在考虑另一种方法。为了简单起见,我假设我们有一个最小堆。因此,每个节点都应该小于其子节点。
在完整的二叉树的骨架中添加所有元素。这需要O(n)时间。现在我们只需要满足min堆属性。由于所有叶元素都没有子元素,因此它们已经满足堆属性。叶元素的总数是ceil(n/2),其中n是树中存在的元素的总数。现在,对于每个内部节点,如果它大于其子节点,则以从下到上的方式将其与最小子节点交换。每个内部节点将花费O(1)时间。注意:我们不会像插入时那样将值交换到根。我们只需交换一次,使该节点上的子树成为一个合适的最小堆。在二进制堆的基于数组的实现中,我们有父级(i)=ceil((i-1)/2),i的子级由2*i+1和2*i+2给出。因此,通过观察,我们可以说数组中的最后一个ceil(n/2)元素将是叶节点。深度越大,节点的索引就越多。我们将对阵列[n/2]、阵列[n/2-1]重复步骤4。。。。。数组[0]。通过这种方式,我们确保我们以自下而上的方式完成这项工作。总的来说,我们最终将维护min堆属性。所有n/2元素的步骤4将花费O(n)时间。
因此,使用这种方法进行堆化的总时间复杂度将为O(n)+O(n)~O(n(n)。
在构建堆的情况下,我们从高度开始,logn-1(其中logn是n个元素的树的高度)。对于高度为“h”的每个元素,我们将最大值设置为(logn-h)。
So total number of traversal would be:-
T(n) = sigma((2^(logn-h))*h) where h varies from 1 to logn
T(n) = n((1/2)+(2/4)+(3/8)+.....+(logn/(2^logn)))
T(n) = n*(sigma(x/(2^x))) where x varies from 1 to logn
and according to the [sources][1]
function in the bracket approaches to 2 at infinity.
Hence T(n) ~ O(n)