是否有任何快速命令或脚本来检查安装的CUDA版本?
我在安装目录下找到了4.0的手册,但我不确定它是否是实际安装的版本。
是否有任何快速命令或脚本来检查安装的CUDA版本?
我在安装目录下找到了4.0的手册,但我不确定它是否是实际安装的版本。
当前回答
打开终端并运行以下命令:
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
您可以获得CUDA驱动程序版本、CUDA运行时版本的信息,以及GPU的详细信息。我的终端输出的图像示例如下。
您可以在此处找到图像。
其他回答
在Ubuntu上:
Try
$cat/usr/local/cuda/version.txt或$cat/usr/local/cuda-8.0/version.txt
有时文件夹名为“Cuda版本”。
如果以上都不起作用,请尝试转到$/usr/local/找到Cuda文件夹的正确名称。
输出应类似于:CUDA版本8.0.61
在以下时间之后找到我的:
whereis cuda
at
cuda:/usr/lib/cuda/usr/include/cuda.h
with
nvcc --version
CUDA版本9.1.85
如果您已安装CUDA SDK,则可以运行“deviceQuery”查看CUDA的版本
对于CUDA版本:
nvcc --version
或者使用,
nvidia-smi
对于cuDNN版本:
对于Linux:
使用以下方法查找cuDNN的路径:
$ whereis cuda
cuda: /usr/local/cuda
然后使用该命令从头文件获取版本,
$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
对于Windows,
使用以下方法查找cuDNN的路径:
C:\>where cudnn*
C:\Program Files\cuDNN7\cuda\bin\cudnn64_7.dll
然后使用它从头文件转储版本,
type "%PROGRAMFILES%\cuDNN7\cuda\include\cudnn.h" | findstr CUDNN_MAJOR
如果您在Windows上获得CUDA的两个不同版本-nvcc和NVIDIA smi显示的不同CUDA版本
其他受访者已经描述了可以使用哪些命令检查CUDA版本。在这里,我将描述如何将这些命令的输出转换为格式为“10.2”、“11.0”等的环境变量。
概括一下,您可以使用
nvcc --version
了解CUDA版本。我想这应该是你的第一个停靠港。如果安装了多个版本的CUDA,此命令应打印出PATH中最高的副本版本。
输出如下所示:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Thu_Jun_11_22:26:38_PDT_2020
Cuda compilation tools, release 11.0, V11.0.194
Build cuda_11.0_bu.TC445_37.28540450_0
我们可以将这个输出传递给sed,以便只选择MAJOR.MINOR发布版本号。
CUDA_VERSION=$(nvcc --version | sed -n 's/^.*release \([0-9]\+\.[0-9]\+\).*$/\1/p')
如果nvcc不在您的路径上,您应该能够通过指定nvcc默认位置的完整路径来运行它。
/usr/local/cuda/bin/nvcc --version
其输出与上述相同,并且可以以相同的方式对其进行解析。
或者,您可以从version.txt文件中找到CUDA版本。
cat /usr/local/cuda/version.txt
其输出
CUDA Version 10.1.243
可以使用sed进行解析,以仅选择MAJOR.MINOR发布版本号。
CUDA_VERSION=$(cat /usr/local/cuda/version.txt | sed 's/.* \([0-9]\+\.[0-9]\+\).*/\1/')
请注意,有时version.txt文件引用的CUDA安装不同于nvcc--version。在这种情况下,nvcc版本应该是您实际使用的版本。
我们可以将这三种方法结合在一起,以稳健地获得CUDA版本,如下所示:
if nvcc --version 2&> /dev/null; then
# Determine CUDA version using default nvcc binary
CUDA_VERSION=$(nvcc --version | sed -n 's/^.*release \([0-9]\+\.[0-9]\+\).*$/\1/p');
elif /usr/local/cuda/bin/nvcc --version 2&> /dev/null; then
# Determine CUDA version using /usr/local/cuda/bin/nvcc binary
CUDA_VERSION=$(/usr/local/cuda/bin/nvcc --version | sed -n 's/^.*release \([0-9]\+\.[0-9]\+\).*$/\1/p');
elif [ -f "/usr/local/cuda/version.txt" ]; then
# Determine CUDA version using /usr/local/cuda/version.txt file
CUDA_VERSION=$(cat /usr/local/cuda/version.txt | sed 's/.* \([0-9]\+\.[0-9]\+\).*/\1/')
else
CUDA_VERSION=""
fi
此环境变量对于下游安装非常有用,例如当pip安装为正确CUDA版本编译的pytorch副本时。
python -m pip install \
"torch==1.9.0+cu${CUDA_VERSION/./}" \
"torchvision==0.10.0+cu${CUDA_VERSION/./}" \
-f https://download.pytorch.org/whl/torch_stable.html
同样,当未安装CUDA时,可以安装CPU版本的pytorch。
if [ "$CUDA_VERSION" = "" ]; then
MOD="+cpu";
echo "Warning: Installing CPU-only version of pytorch"
else
MOD="+cu${CUDA_VERSION/./}";
echo "Installing pytorch with $MOD"
fi
python -m pip install \
"torch==1.9.0${MOD}" \
"torchvision==0.10.0${MOD}" \
-f https://download.pytorch.org/whl/torch_stable.html
但要小心这一点,因为当您打算使用GPU支持时,可能会意外安装仅CPU版本。例如,如果您在没有GPU的服务器登录节点上运行安装脚本,那么您的作业将部署到有GPU的节点上。在这种情况下,登录节点通常不会安装CUDA。