如何在整数列表中找到重复项并创建重复项的另一个列表?
当前回答
有点晚了,但可能对一些人有帮助。 对于一个比较大的列表,我发现这个方法很适合我。
l=[1,2,3,5,4,1,3,1]
s=set(l)
d=[]
for x in l:
if x in s:
s.remove(x)
else:
d.append(x)
d
[1,3,1]
显示正确和所有重复,并保持秩序。
其他回答
使用Set函数 如:-
arr=[1,4,2,5,2,3,4,1,4,5,2,3]
arr2=list(set(arr))
print(arr2)
输出:- [1,2,3,4,5]
使用array删除副本
eg:-
arr=[1,4,2,5,2,3,4,1,4,5,2,3]
arr3=[]
for i in arr:
if(i not in arr3):
arr3.append(i)
print(arr3)
输出: [1,4,2,5,3]
使用Lambda函数
eg:-
rem_duplicate_func=lambda arr:set(arr)
print(rem_duplicate_func(arr))
输出: {1,2,3,4,5}
从字典中删除重复值
eg:-
dict1={
'car':["Ford","Toyota","Ford","Toyota"],
'brand':["Mustang","Ranz","Mustang","Ranz"] } dict2={} for key,value in dict1.items():
dict2[key]=set(value) print(dict2)
输出: {“车”:{“丰田”、“福特”},“品牌”:{“主攻”、“野马”}}
对称差异-删除重复元素
eg:-
set1={1,2,4,5}
set2={2,1,5,7}
rem_dup_ele=set1.symmetric_difference(set2)
print(rem_dup_ele)
输出: {4 7}
使用熊猫:
>>> import pandas as pd
>>> a = [1, 2, 1, 3, 3, 3, 0]
>>> pd.Series(a)[pd.Series(a).duplicated()].values
array([1, 3, 3])
为了好玩,只需要一行语句。
(lambda iterable: reduce(lambda (uniq, dup), item: (uniq, dup | {item}) if item in uniq else (uniq | {item}, dup), iterable, (set(), set())))(some_iterable)
你不需要计数,只需要该物品之前是否被看到过。把这个答案用在这个问题上:
def list_duplicates(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]
以防速度很重要,这里有一些时间安排:
# file: test.py
import collections
def thg435(l):
return [x for x, y in collections.Counter(l).items() if y > 1]
def moooeeeep(l):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in l if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def RiteshKumar(l):
return list(set([x for x in l if l.count(x) > 1]))
def JohnLaRooy(L):
seen = set()
seen2 = set()
seen_add = seen.add
seen2_add = seen2.add
for item in L:
if item in seen:
seen2_add(item)
else:
seen_add(item)
return list(seen2)
l = [1,2,3,2,1,5,6,5,5,5]*100
以下是结果:(做得好@JohnLaRooy!)
$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop
有趣的是,除了计时本身,当使用pypy时,排名也略有变化。最有趣的是,基于counter的方法极大地受益于pypy的优化,而我建议的方法缓存方法似乎几乎没有任何效果。
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop
显然,这种效应与输入数据的“重复性”有关。我设置了l = [random.randrange(1000000) for I in xrange(10000)],得到了这些结果:
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop
一句话解决方案:
set([i for i in list if sum([1 for a in list if a == i]) > 1])
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录