我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

请注意,tf.Print()将改变张量名称。 如果你想要打印的张量是一个占位符,那么向它输入数据将会失败,因为在输入过程中找不到原始的名称。 例如:

import tensorflow as tf
tens = tf.placeholder(tf.float32,[None,2],name="placeholder")
print(eval("tens"))
tens = tf.Print(tens,[tens, tf.shape(tens)],summarize=10,message="tens:")
print(eval("tens"))
res = tens + tens
sess = tf.Session()
sess.run(tf.global_variables_initializer())

print(sess.run(res))

输出是:

python test.py
Tensor("placeholder:0", shape=(?, 2), dtype=float32)
Tensor("Print:0", shape=(?, 2), dtype=float32)
Traceback (most recent call last):
[...]
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'placeholder' with dtype float

其他回答

我发现即使在阅读了所有的答案之后,我也不容易理解需要什么,直到我执行了这个。TensofFlow对我来说也是新的。

def printtest():
x = tf.constant([1.0, 3.0])
x = tf.Print(x,[x],message="Test")
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
b = tf.add(x, x)
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(b))
    sess.close()

但是您仍然可能需要执行会话返回的值。

def printtest():
    x = tf.constant([100.0])
    x = tf.Print(x,[x],message="Test")
    init = (tf.global_variables_initializer(), tf.local_variables_initializer())
    b = tf.add(x, x)
    with tf.Session() as sess:
        sess.run(init)
        c = sess.run(b)
        print(c)
        sess.close()

你可以使用Keras,一行回答将使用eval方法,如下所示:

import keras.backend as K
print(K.eval(your_tensor))

使用https://www.tensorflow.org/api_docs/python/tf/print中提供的提示,我使用log_d函数打印格式化的字符串。

import tensorflow as tf

def log_d(fmt, *args):
    op = tf.py_func(func=lambda fmt_, *args_: print(fmt%(*args_,)),
                    inp=[fmt]+[*args], Tout=[])
    return tf.control_dependencies([op])


# actual code starts now...

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

with log_d('MAT1: %s, MAT2: %s', matrix1, matrix2): # this will print the log line
    product = tf.matmul(matrix1, matrix2)

with tf.Session() as sess:
    sess.run(product)

我认为你需要掌握一些基本知识。通过上面的例子,你已经创建了张量(多维数组)。但是要让张量流真正工作,你必须启动一个“会话”,并在会话中运行你的“操作”。注意单词“session”和“operation”。 要使用张量流,你需要知道4件事:

张量 操作 会话 图

现在,从你写出来的东西中,你已经给出了张量和操作,但你没有运行会话,也没有图。张量(图的边)在图中流动,并由操作(图的节点)操作。有默认的图形,但你可以在会话中初始化你的。

当你说打印时,你只访问你定义的变量或常数的形状。

所以你可以看到你错过了什么:

 with tf.Session() as sess:     
           print(sess.run(product))
           print (product.eval())

希望能有所帮助!

问题:如何在TensorFlow中打印一个张量对象的值?

答:

import tensorflow as tf

# Variable
x = tf.Variable([[1,2,3]])

# initialize
init = (tf.global_variables_initializer(), tf.local_variables_initializer())

# Create a session
sess = tf.Session()

# run the session
sess.run(init)

# print the value
sess.run(x)