我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

你应该认为TensorFlow核心程序由两个独立的部分组成:

构建计算图。 运行计算图。

因此,对于下面的代码,您只需构建计算图。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

为了初始化TensorFlow程序中的所有变量,你必须显式调用一个特殊操作,如下所示:

init = tf.global_variables_initializer()

现在您构建了图并初始化了所有变量,下一步是计算节点,您必须在会话中运行计算图。会话封装了TensorFlow运行时的控件和状态。

下面的代码创建一个Session对象,然后调用它的run方法来运行足够的计算图来计算product:

sess = tf.Session()
// run variables initializer
sess.run(init)

print(sess.run([product]))

其他回答

不,你不能在不运行图(执行session.run())的情况下看到张量的内容。你能看到的只有:

张量的维数(但我假设对TF的操作列表计算它并不难) 用于生成张量(transpose_1:0, random_uniform:0)的操作类型。 张量中元素的类型(float32)

我没有在文档中找到这一点,但我相信变量的值(和一些常数在赋值时没有计算)。


看看这个例子:

import tensorflow as tf
from datetime import datetime
dim = 7000

第一个例子中,我刚刚启动了一个常数的随机数张量运行的时间几乎是相同的不管dim (0:00:00.003261)

startTime = datetime.now()
m1 = tf.truncated_normal([dim, dim], mean=0.0, stddev=0.02, dtype=tf.float32, seed=1)
print datetime.now() - startTime

在第二种情况中,实际计算了常数并分配了值,时间显然取决于dim (0:00:01.244642)

startTime = datetime.now()
m1 = tf.truncated_normal([dim, dim], mean=0.0, stddev=0.02, dtype=tf.float32, seed=1)
sess = tf.Session()
sess.run(m1)
print datetime.now() - startTime

你可以通过计算一些东西来让它更清楚(d = tf. matrix_行列式(m1),记住时间将以O(dim^2.8)为单位运行)

附注:我在文档中找到了解释:

张量对象是运算结果的符号句柄, 但是实际上并不保存操作输出的值。

求一个Tensor对象的实际值最简单的方法是将它传递给session .run()方法,或者当你有一个默认会话(即在with tf.Session():块中,或见下文)时调用Tensor.eval()。一般来说[B],如果不在会话中运行一些代码,就不能打印张量的值。

如果你正在试验编程模型,想要一种简单的方法来求张量,tf。InteractiveSession允许你在程序开始时打开一个会话,然后将该会话用于所有的Tensor.eval()(和Operation.run())调用。这在交互设置中(比如shell或IPython笔记本)更容易,因为到处传递Session对象很乏味。例如,以下工作在Jupyter笔记本:

with tf.Session() as sess:  print(product.eval()) 

对于如此小的表达式来说,这可能看起来很愚蠢,但这是Tensorflow 1中的关键思想之一。x是延迟执行:构建一个大而复杂的表达式非常便宜,当你想计算它时,后端(你连接到一个会话)能够更有效地调度它的执行(例如并行执行独立的部分并使用gpu)。


[A]:要打印一个张量的值而不返回到你的Python程序,你可以使用tf.print()操作符,正如Andrzej在另一个答案中建议的那样。根据官方文件:

为了确保操作符运行,用户需要将生成的op传递给tf. compat_1 . session的run方法,或者通过指定tf. compat_1 .control_dependencies([print_op])将op作为已执行操作的控制依赖项,输出到标准输出。

还要注意:

在Jupyter笔记本和colabs中,tf。打印打印到笔记本单元格输出。它不会写入笔记本内核的控制台日志。

[B]:你可以使用tf.get_static_value()函数来获得给定张量的常数值,如果它的值是可以有效计算的。

我不确定我是否遗漏了这里,但我认为最简单和最好的方法是使用tf.keras.backend。get_value API。

print(product)
>>tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(tf.keras.backend.get_value(product))
>>[[12.]]

在Tensorflow V2中,使用:tf.keras.backend打印张量的值。print_tensor (x,消息= ")

请注意,tf.Print()将改变张量名称。 如果你想要打印的张量是一个占位符,那么向它输入数据将会失败,因为在输入过程中找不到原始的名称。 例如:

import tensorflow as tf
tens = tf.placeholder(tf.float32,[None,2],name="placeholder")
print(eval("tens"))
tens = tf.Print(tens,[tens, tf.shape(tens)],summarize=10,message="tens:")
print(eval("tens"))
res = tens + tens
sess = tf.Session()
sess.run(tf.global_variables_initializer())

print(sess.run(res))

输出是:

python test.py
Tensor("placeholder:0", shape=(?, 2), dtype=float32)
Tensor("Print:0", shape=(?, 2), dtype=float32)
Traceback (most recent call last):
[...]
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'placeholder' with dtype float