我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

你应该认为TensorFlow核心程序由两个独立的部分组成:

构建计算图。 运行计算图。

因此,对于下面的代码,您只需构建计算图。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

为了初始化TensorFlow程序中的所有变量,你必须显式调用一个特殊操作,如下所示:

init = tf.global_variables_initializer()

现在您构建了图并初始化了所有变量,下一步是计算节点,您必须在会话中运行计算图。会话封装了TensorFlow运行时的控件和状态。

下面的代码创建一个Session对象,然后调用它的run方法来运行足够的计算图来计算product:

sess = tf.Session()
// run variables initializer
sess.run(init)

print(sess.run([product]))

其他回答

你可以使用Keras,一行回答将使用eval方法,如下所示:

import keras.backend as K
print(K.eval(your_tensor))

通过启用即时执行,你可以检查TensorObject的输出,而不用在会话中运行图。

只需添加以下两行代码: 导入tensorflow.contrib.eager为tfe tfe.enable_eager_execution ()

在你导入tensorflow之后。

在你的例子中打印产品的输出现在将是: 特遣部队。张量([[12。[],形状=(1,1),dtype=float32)

请注意,从现在(2017年11月)开始,你必须每晚安装一个Tensorflow构建来实现快速执行。预建车轮可以在这里找到。

在Tensorflow V2中,使用:tf.keras.backend打印张量的值。print_tensor (x,消息= ")

import tensorflow as tf
sess = tf.InteractiveSession()
x = [[1.,2.,1.],[1.,1.,1.]]    
y = tf.nn.softmax(x)           

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

print(product.eval())
tf.reset_default_graph()
sess.close()

启用热切执行,这是在1.10版之后tensorflow中引入的。 它很容易使用。

# Initialize session
import tensorflow as tf
tf.enable_eager_execution()


# Some tensor we want to print the value of
a = tf.constant([1.0, 3.0])

print(a)