我一直在使用TensorFlow中矩阵乘法的介绍性示例。
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
当我打印乘积时,它显示为一个张量对象:
<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>
但是我怎么知道产品的价值呢?
下面的方法不起作用:
print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)
我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?
在Tensorflow 1.x中
import tensorflow as tf
tf.enable_eager_execution()
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
#print the product
print(product) # tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(product.numpy()) # [[12.]]
用Tensorflow 2。X,默认开启急切模式。因此下面的代码与TF2.0一起工作。
import tensorflow as tf
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
#print the product
print(product) # tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(product.numpy()) # [[12.]]
不,你不能在不运行图(执行session.run())的情况下看到张量的内容。你能看到的只有:
张量的维数(但我假设对TF的操作列表计算它并不难)
用于生成张量(transpose_1:0, random_uniform:0)的操作类型。
张量中元素的类型(float32)
我没有在文档中找到这一点,但我相信变量的值(和一些常数在赋值时没有计算)。
看看这个例子:
import tensorflow as tf
from datetime import datetime
dim = 7000
第一个例子中,我刚刚启动了一个常数的随机数张量运行的时间几乎是相同的不管dim (0:00:00.003261)
startTime = datetime.now()
m1 = tf.truncated_normal([dim, dim], mean=0.0, stddev=0.02, dtype=tf.float32, seed=1)
print datetime.now() - startTime
在第二种情况中,实际计算了常数并分配了值,时间显然取决于dim (0:00:01.244642)
startTime = datetime.now()
m1 = tf.truncated_normal([dim, dim], mean=0.0, stddev=0.02, dtype=tf.float32, seed=1)
sess = tf.Session()
sess.run(m1)
print datetime.now() - startTime
你可以通过计算一些东西来让它更清楚(d = tf. matrix_行列式(m1),记住时间将以O(dim^2.8)为单位运行)
附注:我在文档中找到了解释:
张量对象是运算结果的符号句柄,
但是实际上并不保存操作输出的值。
基本上,在tensorflow中,当你创建任何类型的张量时,它们都会被创建并存储在里面,只有当你运行tensorflow会话时才能访问。假设你已经创建了一个常数张量
c = tf.constant ([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)))
不运行会话,您可以得到
—op:操作。计算这个张量的运算。
—value_index: int类型。生成这个张量的操作端点的索引。
—dtype: dtype类型。存储在这个张量中的元素类型。
为了得到这些值,你可以用你需要的张量运行一个会话:
with tf.Session() as sess:
print(sess.run(c))
sess.close()
输出将是这样的:
array([[1st, 2nd, 3rd],
[4th, 5th, 6th]], dtype=float32)
import tensorflow as tf
sess = tf.InteractiveSession()
x = [[1.,2.,1.],[1.,1.,1.]]
y = tf.nn.softmax(x)
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
print(product.eval())
tf.reset_default_graph()
sess.close()