我想使用.replace函数替换多个字符串。
我目前有
string.replace("condition1", "")
但想要一些像
string.replace("condition1", "").replace("condition2", "text")
尽管这样的语法感觉不太好
正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段
我想使用.replace函数替换多个字符串。
我目前有
string.replace("condition1", "")
但想要一些像
string.replace("condition1", "").replace("condition2", "text")
尽管这样的语法感觉不太好
正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段
当前回答
或者简单说一下:
for line in to_read:
read_buffer = line
stripped_buffer1 = read_buffer.replace("term1", " ")
stripped_buffer2 = stripped_buffer1.replace("term2", " ")
write_to_file = to_write.write(stripped_buffer2)
其他回答
你可以做一个漂亮的循环函数。
def replace_all(text, dic):
for i, j in dic.iteritems():
text = text.replace(i, j)
return text
其中text是完整的字符串,dic是字典-每个定义都是一个字符串,将替换与术语匹配的字符串。
注意:在Python 3中,iteritems()已被items()取代
注意:Python字典没有迭代的可靠顺序。此解决方案仅在以下情况下解决您的问题:
替换的顺序无关紧要 替换者可以改变之前替换者的结果
更新:上述与插入顺序相关的语句不适用于大于或等于3.6的Python版本,因为标准字典已更改为使用插入顺序进行迭代。
例如:
d = { "cat": "dog", "dog": "pig"}
my_sentence = "This is my cat and this is my dog."
replace_all(my_sentence, d)
print(my_sentence)
可能输出#1:
"This is my pig and this is my pig."
可能的输出#2
"This is my dog and this is my pig."
一个可能的解决方法是使用OrderedDict。
from collections import OrderedDict
def replace_all(text, dic):
for i, j in dic.items():
text = text.replace(i, j)
return text
od = OrderedDict([("cat", "dog"), ("dog", "pig")])
my_sentence = "This is my cat and this is my dog."
replace_all(my_sentence, od)
print(my_sentence)
输出:
"This is my pig and this is my pig."
注意事项#2:如果你的文本字符串太大或字典中有很多对,效率就会很低。
或者简单说一下:
for line in to_read:
read_buffer = line
stripped_buffer1 = read_buffer.replace("term1", " ")
stripped_buffer2 = stripped_buffer1.replace("term2", " ")
write_to_file = to_write.write(stripped_buffer2)
你真的不应该这样做,但我觉得这太酷了:
>>> replacements = {'cond1':'text1', 'cond2':'text2'}
>>> cmd = 'answer = s'
>>> for k,v in replacements.iteritems():
>>> cmd += ".replace(%s, %s)" %(k,v)
>>> exec(cmd)
现在,答案是所有替换的结果
再说一次,这是非常俗气的,不是你应该经常使用的东西。但我很高兴知道如果你需要的话,你可以这样做。
您可以使用pandas库和replace函数,它既支持精确匹配,也支持正则表达式替换。例如:
df = pd.DataFrame({'text': ['Billy is going to visit Rome in November', 'I was born in 10/10/2010', 'I will be there at 20:00']})
to_replace=['Billy','Rome','January|February|March|April|May|June|July|August|September|October|November|December', '\d{2}:\d{2}', '\d{2}/\d{2}/\d{4}']
replace_with=['name','city','month','time', 'date']
print(df.text.replace(to_replace, replace_with, regex=True))
修改后的文本为:
0 name is going to visit city in month
1 I was born in date
2 I will be there at time
你可以在这里找到一个例子。请注意,文本上的替换是按照它们在列表中出现的顺序进行的
我在学校作业中也做过类似的练习。这就是我的解
dictionary = {1: ['hate', 'love'],
2: ['salad', 'burger'],
3: ['vegetables', 'pizza']}
def normalize(text):
for i in dictionary:
text = text.replace(dictionary[i][0], dictionary[i][1])
return text
自己查看测试字符串上的结果
string_to_change = 'I hate salad and vegetables'
print(normalize(string_to_change))