考虑以下几点:

@property
def name(self):

    if not hasattr(self, '_name'):

        # expensive calculation
        self._name = 1 + 1

    return self._name

我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)

PS,真正的计算不依赖于可变值


当前回答

除了Memoize示例,我还找到了以下python包:

cachepy;它允许设置ttl和\或缓存函数的调用次数;此外,还可以使用加密的基于文件的缓存… percache

其他回答

如果你正在使用Django框架,它有这样一个属性来缓存API的视图或响应 使用@cache_page(time),也可以有其他选项。

例子:

@cache_page(60 * 15, cache="special_cache")
def my_view(request):
    ...

更多细节可以在这里找到。

class memorize(dict):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args):
        return self[args]

    def __missing__(self, key):
        result = self[key] = self.func(*key)
        return result

示例使用:

>>> @memorize
... def foo(a, b):
...     return a * b
>>> foo(2, 4)
8
>>> foo
{(2, 4): 8}
>>> foo('hi', 3)
'hihihi'
>>> foo
{(2, 4): 8, ('hi', 3): 'hihihi'}

Werkzeug有一个cached_property装饰器(docs, source)

函数缓存简单解决方案

TTL(时间到生命)和max_entries

当修饰函数接受不可哈希类型作为输入(例如dicts)时,不工作 可选参数:TTL(每个条目的生存时间) 可选参数:max_entries(如果缓存参数组合太多,不会使存储混乱) 确保该函数没有重要的副作用

示例使用

import time

@cache(ttl=timedelta(minutes=3), max_entries=300)
def add(a, b):
    time.sleep(2)
    return a + b

@cache()
def substract(a, b):
    time.sleep(2)
    return a - b

a = 5
# function is called with argument combinations the first time -> it takes some time
for i in range(5):
    print(add(a, i))

# function is called with same arguments again? -> will answer from cache
for i in range(5):
    print(add(a, i))

复制装饰器代码

from datetime import datetime, timedelta

def cache(**kwargs):
  def decorator(function):
    # static function variable for cache, lazy initialization
    try: function.cache
    except: function.cache = {}
    def wrapper(*args):
        # if nothing valid in cache, insert something
        if not args in function.cache or datetime.now() > function.cache[args]['expiry']:
            if 'max_entries' in kwargs:
                max_entries = kwargs['max_entries']
                if max_entries != None and len(function.cache) >= max_entries:
                    now = datetime.now()
                    # delete the the first expired entry that can be found (lazy deletion)
                    for key in function.cache:
                        if function.cache[key]['expiry'] < now:
                            del function.cache[key]
                            break
                    # if nothing is expired that is deletable, delete the first
                    if len(function.cache) >= max_entries:
                        del function.cache[next(iter(function.cache))]
            function.cache[args] = {'result': function(*args), 'expiry': datetime.max if 'ttl' not in kwargs else datetime.now() + kwargs['ttl']}

        # answer from cache
        return function.cache[args]['result']
    return wrapper
  return decorator

在Python Wiki中还有另一个备忘录装饰器的例子:

http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)