考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
当前回答
创建自己的装饰器并使用它
from django.core.cache import cache
import functools
def cache_returned_values(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
key = "choose a unique key here"
results = cache.get(key)
if not results:
results = func(*args, **kwargs)
cache.set(key, results)
return results
return wrapper
现在看函数
@cache_returned_values
def get_some_values(args):
return x
其他回答
from functools import wraps
def cache(maxsize=128):
cache = {}
def decorator(func):
@wraps(func)
def inner(*args, no_cache=False, **kwargs):
if no_cache:
return func(*args, **kwargs)
key_base = "_".join(str(x) for x in args)
key_end = "_".join(f"{k}:{v}" for k, v in kwargs.items())
key = f"{key_base}-{key_end}"
if key in cache:
return cache[key]
res = func(*args, **kwargs)
if len(cache) > maxsize:
del cache[list(cache.keys())[0]]
cache[key] = res
return res
return inner
return decorator
def async_cache(maxsize=128):
cache = {}
def decorator(func):
@wraps(func)
async def inner(*args, no_cache=False, **kwargs):
if no_cache:
return await func(*args, **kwargs)
key_base = "_".join(str(x) for x in args)
key_end = "_".join(f"{k}:{v}" for k, v in kwargs.items())
key = f"{key_base}-{key_end}"
if key in cache:
return cache[key]
res = await func(*args, **kwargs)
if len(cache) > maxsize:
del cache[list(cache.keys())[0]]
cache[key] = res
return res
return inner
return decorator
示例使用
import asyncio
import aiohttp
# Removes the aiohttp ClientSession instance warning.
class HTTPSession(aiohttp.ClientSession):
""" Abstract class for aiohttp. """
def __init__(self, loop=None) -> None:
super().__init__(loop=loop or asyncio.get_event_loop())
def __del__(self) -> None:
if not self.closed:
self.loop.run_until_complete(self.close())
self.loop.close()
return
session = HTTPSession()
@async_cache()
async def query(url, method="get", res_method="text", *args, **kwargs):
async with getattr(session, method.lower())(url, *args, **kwargs) as res:
return await getattr(res, res_method)()
async def get(url, *args, **kwargs):
return await query(url, "get", *args, **kwargs)
async def post(url, *args, **kwargs):
return await query(url, "post", *args, **kwargs)
async def delete(url, *args, **kwargs):
return await query(url, "delete", *args, **kwargs)
创建自己的装饰器并使用它
from django.core.cache import cache
import functools
def cache_returned_values(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
key = "choose a unique key here"
results = cache.get(key)
if not results:
results = func(*args, **kwargs)
cache.set(key, results)
return results
return wrapper
现在看函数
@cache_returned_values
def get_some_values(args):
return x
我实现了类似的东西,使用pickle进行持久化,使用sha1进行简短的几乎唯一的id。基本上,缓存对函数代码和参数的历史进行哈希,以获得sha1,然后查找名称为sha1的文件。如果它存在,则打开它并返回结果;如果没有,则调用该函数并保存结果(如果需要一定时间来处理,则可以选择只保存结果)。
也就是说,我发誓我找到了一个现有的模块,它做到了这一点,并发现自己在这里试图找到该模块……我能找到的最接近的是这个,看起来差不多:http://chase-seibert.github.io/blog/2011/11/23/pythondjango-disk-based-caching-decorator.html
我看到的唯一问题是,它不能很好地用于大输入,因为它散列str(arg),这不是唯一的大型数组。
如果有一个unique_hash()协议,让一个类返回其内容的安全散列,那就太好了。我基本上是手动实现我所关心的类型。
在Python Wiki中还有另一个备忘录装饰器的例子:
http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize
这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)
Python 3.8 functools。cached_property装饰
https://docs.python.org/dev/library/functools.html#functools.cached_property
来自Werkzeug的cached_property在:https://stackoverflow.com/a/5295190/895245上提到过,但据说派生版本将合并到3.8中,这是非常棒的。
这个装饰器可以被看作是缓存@property,或者是清洁器@functools。Lru_cache,当你没有任何参数时。
医生说:
@functools.cached_property(func) Transform a method of a class into a property whose value is computed once and then cached as a normal attribute for the life of the instance. Similar to property(), with the addition of caching. Useful for expensive computed properties of instances that are otherwise effectively immutable. Example: class DataSet: def __init__(self, sequence_of_numbers): self._data = sequence_of_numbers @cached_property def stdev(self): return statistics.stdev(self._data) @cached_property def variance(self): return statistics.variance(self._data) New in version 3.8. Note This decorator requires that the dict attribute on each instance be a mutable mapping. This means it will not work with some types, such as metaclasses (since the dict attributes on type instances are read-only proxies for the class namespace), and those that specify slots without including dict as one of the defined slots (as such classes don’t provide a dict attribute at all).