考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
当前回答
函数缓存简单解决方案
TTL(时间到生命)和max_entries
当修饰函数接受不可哈希类型作为输入(例如dicts)时,不工作 可选参数:TTL(每个条目的生存时间) 可选参数:max_entries(如果缓存参数组合太多,不会使存储混乱) 确保该函数没有重要的副作用
示例使用
import time
@cache(ttl=timedelta(minutes=3), max_entries=300)
def add(a, b):
time.sleep(2)
return a + b
@cache()
def substract(a, b):
time.sleep(2)
return a - b
a = 5
# function is called with argument combinations the first time -> it takes some time
for i in range(5):
print(add(a, i))
# function is called with same arguments again? -> will answer from cache
for i in range(5):
print(add(a, i))
复制装饰器代码
from datetime import datetime, timedelta
def cache(**kwargs):
def decorator(function):
# static function variable for cache, lazy initialization
try: function.cache
except: function.cache = {}
def wrapper(*args):
# if nothing valid in cache, insert something
if not args in function.cache or datetime.now() > function.cache[args]['expiry']:
if 'max_entries' in kwargs:
max_entries = kwargs['max_entries']
if max_entries != None and len(function.cache) >= max_entries:
now = datetime.now()
# delete the the first expired entry that can be found (lazy deletion)
for key in function.cache:
if function.cache[key]['expiry'] < now:
del function.cache[key]
break
# if nothing is expired that is deletable, delete the first
if len(function.cache) >= max_entries:
del function.cache[next(iter(function.cache))]
function.cache[args] = {'result': function(*args), 'expiry': datetime.max if 'ttl' not in kwargs else datetime.now() + kwargs['ttl']}
# answer from cache
return function.cache[args]['result']
return wrapper
return decorator
其他回答
在Python Wiki中还有另一个备忘录装饰器的例子:
http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize
这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)
除了Memoize示例,我还找到了以下python包:
cachepy;它允许设置ttl和\或缓存函数的调用次数;此外,还可以使用加密的基于文件的缓存… percache
@lru_cache不适合默认attrs
我的@mem装饰:
import inspect
from copy import deepcopy
from functools import lru_cache, wraps
from typing import Any, Callable, Dict, Iterable
# helper
def get_all_kwargs_values(f: Callable, kwargs: Dict[str, Any]) -> Iterable[Any]:
default_kwargs = {
k: v.default
for k, v in inspect.signature(f).parameters.items()
if v.default is not inspect.Parameter.empty
}
all_kwargs = deepcopy(default_kwargs)
all_kwargs.update(kwargs)
for key in sorted(all_kwargs.keys()):
yield all_kwargs[key]
# the best decorator
def mem(func: Callable) -> Callable:
cache = dict()
@wraps(func)
def wrapper(*args, **kwargs) -> Any:
all_kwargs_values = get_all_kwargs_values(func, kwargs)
params = (*args, *all_kwargs_values)
_hash = hash(params)
if _hash not in cache:
cache[_hash] = func(*args, **kwargs)
return cache[_hash]
return wrapper
# some logic
def counter(*args) -> int:
print(f'* not_cached:', end='\t')
return sum(args)
@mem
def check_mem(a, *args, z=10) -> int:
return counter(a, *args, z)
@lru_cache
def check_lru(a, *args, z=10) -> int:
return counter(a, *args, z)
def test(func) -> None:
print(f'\nTest {func.__name__}:')
print('*', func(1, 2, 3, 4, 5))
print('*', func(1, 2, 3, 4, 5))
print('*', func(1, 2, 3, 4, 5, z=6))
print('*', func(1, 2, 3, 4, 5, z=6))
print('*', func(1))
print('*', func(1, z=10))
def main():
test(check_mem)
test(check_lru)
if __name__ == '__main__':
main()
输出:
Test check_mem:
* not_cached: * 25
* 25
* not_cached: * 21
* 21
* not_cached: * 11
* 11
Test check_lru:
* not_cached: * 25
* 25
* not_cached: * 21
* 21
* not_cached: * 11
* not_cached: * 11
尝试joblib https://joblib.readthedocs.io/en/latest/memory.html
from joblib import Memory
memory = Memory(cachedir=cachedir, verbose=0)
@memory.cache
def f(x):
print('Running f(%s)' % x)
return x
Werkzeug有一个cached_property装饰器(docs, source)