考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
当前回答
函数缓存简单解决方案
TTL(时间到生命)和max_entries
当修饰函数接受不可哈希类型作为输入(例如dicts)时,不工作 可选参数:TTL(每个条目的生存时间) 可选参数:max_entries(如果缓存参数组合太多,不会使存储混乱) 确保该函数没有重要的副作用
示例使用
import time
@cache(ttl=timedelta(minutes=3), max_entries=300)
def add(a, b):
time.sleep(2)
return a + b
@cache()
def substract(a, b):
time.sleep(2)
return a - b
a = 5
# function is called with argument combinations the first time -> it takes some time
for i in range(5):
print(add(a, i))
# function is called with same arguments again? -> will answer from cache
for i in range(5):
print(add(a, i))
复制装饰器代码
from datetime import datetime, timedelta
def cache(**kwargs):
def decorator(function):
# static function variable for cache, lazy initialization
try: function.cache
except: function.cache = {}
def wrapper(*args):
# if nothing valid in cache, insert something
if not args in function.cache or datetime.now() > function.cache[args]['expiry']:
if 'max_entries' in kwargs:
max_entries = kwargs['max_entries']
if max_entries != None and len(function.cache) >= max_entries:
now = datetime.now()
# delete the the first expired entry that can be found (lazy deletion)
for key in function.cache:
if function.cache[key]['expiry'] < now:
del function.cache[key]
break
# if nothing is expired that is deletable, delete the first
if len(function.cache) >= max_entries:
del function.cache[next(iter(function.cache))]
function.cache[args] = {'result': function(*args), 'expiry': datetime.max if 'ttl' not in kwargs else datetime.now() + kwargs['ttl']}
# answer from cache
return function.cache[args]['result']
return wrapper
return decorator
其他回答
我实现了类似的东西,使用pickle进行持久化,使用sha1进行简短的几乎唯一的id。基本上,缓存对函数代码和参数的历史进行哈希,以获得sha1,然后查找名称为sha1的文件。如果它存在,则打开它并返回结果;如果没有,则调用该函数并保存结果(如果需要一定时间来处理,则可以选择只保存结果)。
也就是说,我发誓我找到了一个现有的模块,它做到了这一点,并发现自己在这里试图找到该模块……我能找到的最接近的是这个,看起来差不多:http://chase-seibert.github.io/blog/2011/11/23/pythondjango-disk-based-caching-decorator.html
我看到的唯一问题是,它不能很好地用于大输入,因为它散列str(arg),这不是唯一的大型数组。
如果有一个unique_hash()协议,让一个类返回其内容的安全散列,那就太好了。我基本上是手动实现我所关心的类型。
在Python Wiki中还有另一个备忘录装饰器的例子:
http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize
这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)
除了Memoize示例,我还找到了以下python包:
cachepy;它允许设置ttl和\或缓存函数的调用次数;此外,还可以使用加密的基于文件的缓存… percache
functools。缓存已经在Python 3.9 (docs)中发布:
from functools import cache
@cache
def factorial(n):
return n * factorial(n-1) if n else 1
在以前的Python版本中,早期的答案之一仍然是有效的解决方案:使用lru_cache作为普通缓存,没有限制和lru特性。(文档)
如果maxsize设置为None,将禁用LRU特性,并将缓存 可以不受束缚地成长。
这里有一个更漂亮的版本:
cache = lru_cache(maxsize=None)
@cache
def func(param1):
pass
啊,只需要给这个找到一个正确的名字:“懒惰的属性评估”。
我也经常这样做;也许有一天我会在我的代码中使用这个配方。