考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
考虑以下几点:
@property
def name(self):
if not hasattr(self, '_name'):
# expensive calculation
self._name = 1 + 1
return self._name
我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)
PS,真正的计算不依赖于可变值
当前回答
functools。缓存已经在Python 3.9 (docs)中发布:
from functools import cache
@cache
def factorial(n):
return n * factorial(n-1) if n else 1
在以前的Python版本中,早期的答案之一仍然是有效的解决方案:使用lru_cache作为普通缓存,没有限制和lru特性。(文档)
如果maxsize设置为None,将禁用LRU特性,并将缓存 可以不受束缚地成长。
这里有一个更漂亮的版本:
cache = lru_cache(maxsize=None)
@cache
def func(param1):
pass
其他回答
尝试joblib https://joblib.readthedocs.io/en/latest/memory.html
from joblib import Memory
memory = Memory(cachedir=cachedir, verbose=0)
@memory.cache
def f(x):
print('Running f(%s)' % x)
return x
Werkzeug有一个cached_property装饰器(docs, source)
class memorize(dict):
def __init__(self, func):
self.func = func
def __call__(self, *args):
return self[args]
def __missing__(self, key):
result = self[key] = self.func(*key)
return result
示例使用:
>>> @memorize
... def foo(a, b):
... return a * b
>>> foo(2, 4)
8
>>> foo
{(2, 4): 8}
>>> foo('hi', 3)
'hihihi'
>>> foo
{(2, 4): 8, ('hi', 3): 'hihihi'}
函数缓存简单解决方案
TTL(时间到生命)和max_entries
当修饰函数接受不可哈希类型作为输入(例如dicts)时,不工作 可选参数:TTL(每个条目的生存时间) 可选参数:max_entries(如果缓存参数组合太多,不会使存储混乱) 确保该函数没有重要的副作用
示例使用
import time
@cache(ttl=timedelta(minutes=3), max_entries=300)
def add(a, b):
time.sleep(2)
return a + b
@cache()
def substract(a, b):
time.sleep(2)
return a - b
a = 5
# function is called with argument combinations the first time -> it takes some time
for i in range(5):
print(add(a, i))
# function is called with same arguments again? -> will answer from cache
for i in range(5):
print(add(a, i))
复制装饰器代码
from datetime import datetime, timedelta
def cache(**kwargs):
def decorator(function):
# static function variable for cache, lazy initialization
try: function.cache
except: function.cache = {}
def wrapper(*args):
# if nothing valid in cache, insert something
if not args in function.cache or datetime.now() > function.cache[args]['expiry']:
if 'max_entries' in kwargs:
max_entries = kwargs['max_entries']
if max_entries != None and len(function.cache) >= max_entries:
now = datetime.now()
# delete the the first expired entry that can be found (lazy deletion)
for key in function.cache:
if function.cache[key]['expiry'] < now:
del function.cache[key]
break
# if nothing is expired that is deletable, delete the first
if len(function.cache) >= max_entries:
del function.cache[next(iter(function.cache))]
function.cache[args] = {'result': function(*args), 'expiry': datetime.max if 'ttl' not in kwargs else datetime.now() + kwargs['ttl']}
# answer from cache
return function.cache[args]['result']
return wrapper
return decorator
Python 3.8 functools。cached_property装饰
https://docs.python.org/dev/library/functools.html#functools.cached_property
来自Werkzeug的cached_property在:https://stackoverflow.com/a/5295190/895245上提到过,但据说派生版本将合并到3.8中,这是非常棒的。
这个装饰器可以被看作是缓存@property,或者是清洁器@functools。Lru_cache,当你没有任何参数时。
医生说:
@functools.cached_property(func) Transform a method of a class into a property whose value is computed once and then cached as a normal attribute for the life of the instance. Similar to property(), with the addition of caching. Useful for expensive computed properties of instances that are otherwise effectively immutable. Example: class DataSet: def __init__(self, sequence_of_numbers): self._data = sequence_of_numbers @cached_property def stdev(self): return statistics.stdev(self._data) @cached_property def variance(self): return statistics.variance(self._data) New in version 3.8. Note This decorator requires that the dict attribute on each instance be a mutable mapping. This means it will not work with some types, such as metaclasses (since the dict attributes on type instances are read-only proxies for the class namespace), and those that specify slots without including dict as one of the defined slots (as such classes don’t provide a dict attribute at all).