考虑以下几点:

@property
def name(self):

    if not hasattr(self, '_name'):

        # expensive calculation
        self._name = 1 + 1

    return self._name

我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)

PS,真正的计算不依赖于可变值


当前回答

class memorize(dict):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args):
        return self[args]

    def __missing__(self, key):
        result = self[key] = self.func(*key)
        return result

示例使用:

>>> @memorize
... def foo(a, b):
...     return a * b
>>> foo(2, 4)
8
>>> foo
{(2, 4): 8}
>>> foo('hi', 3)
'hihihi'
>>> foo
{(2, 4): 8, ('hi', 3): 'hihihi'}

其他回答

我实现了类似的东西,使用pickle进行持久化,使用sha1进行简短的几乎唯一的id。基本上,缓存对函数代码和参数的历史进行哈希,以获得sha1,然后查找名称为sha1的文件。如果它存在,则打开它并返回结果;如果没有,则调用该函数并保存结果(如果需要一定时间来处理,则可以选择只保存结果)。

也就是说,我发誓我找到了一个现有的模块,它做到了这一点,并发现自己在这里试图找到该模块……我能找到的最接近的是这个,看起来差不多:http://chase-seibert.github.io/blog/2011/11/23/pythondjango-disk-based-caching-decorator.html

我看到的唯一问题是,它不能很好地用于大输入,因为它散列str(arg),这不是唯一的大型数组。

如果有一个unique_hash()协议,让一个类返回其内容的安全散列,那就太好了。我基本上是手动实现我所关心的类型。

@lru_cache不适合默认attrs

我的@mem装饰:

import inspect
from copy import deepcopy
from functools import lru_cache, wraps
from typing import Any, Callable, Dict, Iterable


# helper
def get_all_kwargs_values(f: Callable, kwargs: Dict[str, Any]) -> Iterable[Any]:
    default_kwargs = {
        k: v.default
        for k, v in inspect.signature(f).parameters.items()
        if v.default is not inspect.Parameter.empty
    }

    all_kwargs = deepcopy(default_kwargs)
    all_kwargs.update(kwargs)

    for key in sorted(all_kwargs.keys()):
        yield all_kwargs[key]


# the best decorator
def mem(func: Callable) -> Callable:
    cache = dict()

    @wraps(func)
    def wrapper(*args, **kwargs) -> Any:
        all_kwargs_values = get_all_kwargs_values(func, kwargs)
        params = (*args, *all_kwargs_values)
        _hash = hash(params)

        if _hash not in cache:
            cache[_hash] = func(*args, **kwargs)

        return cache[_hash]

    return wrapper


# some logic
def counter(*args) -> int:
    print(f'* not_cached:', end='\t')
    return sum(args)


@mem
def check_mem(a, *args, z=10) -> int:
    return counter(a, *args, z)


@lru_cache
def check_lru(a, *args, z=10) -> int:
    return counter(a, *args, z)


def test(func) -> None:
    print(f'\nTest {func.__name__}:')

    print('*', func(1, 2, 3, 4, 5))
    print('*', func(1, 2, 3, 4, 5))
    print('*', func(1, 2, 3, 4, 5, z=6))
    print('*', func(1, 2, 3, 4, 5, z=6))
    print('*', func(1))
    print('*', func(1, z=10))


def main():
    test(check_mem)
    test(check_lru)


if __name__ == '__main__':
    main()

输出:

Test check_mem:
* not_cached:   * 25
* 25
* not_cached:   * 21
* 21
* not_cached:   * 11
* 11

Test check_lru:
* not_cached:   * 25
* 25
* not_cached:   * 21
* 21
* not_cached:   * 11
* not_cached:   * 11

啊,只需要给这个找到一个正确的名字:“懒惰的属性评估”。

我也经常这样做;也许有一天我会在我的代码中使用这个配方。

免责声明:我是kids.cache的作者。

你应该检查孩子。Cache,它提供了一个在python 2和python 3上工作的@cache装饰器。没有依赖关系,大约100行代码。它的使用非常简单,例如,在你的代码中,你可以这样使用:

pip install kids.cache

Then

from kids.cache import cache
...
class MyClass(object):
    ...
    @cache            # <-- That's all you need to do
    @property
    def name(self):
        return 1 + 1  # supposedly expensive calculation

或者你可以把@cache装饰器放在@属性之后(同样的结果)。

在属性上使用缓存被称为惰性求值。缓存可以做更多的事情(它适用于带有任何参数、属性、任何类型的方法,甚至是类的函数……)对于高级用户,儿童。cache支持cachetools,它为python 2和python 3提供了漂亮的缓存存储(LRU, LFU, TTL, RR缓存)。

重要提示:孩子的默认缓存存储。缓存是一个标准字典,不建议长时间运行具有不同查询的程序,因为它会导致缓存存储不断增长。对于这种用法,你可以使用插件其他缓存存储使用例如(@cache(use=cachetools.LRUCache(maxsize=2))来装饰你的函数/属性/类/方法…)

听起来好像您不是在要求一个通用的记忆化装饰器(也就是说,您对想要缓存不同参数值的返回值的一般情况不感兴趣)。也就是说,你想要这样:

x = obj.name  # expensive
y = obj.name  # cheap

而一个通用的记忆装饰器会给你这样的:

x = obj.name()  # expensive
y = obj.name()  # cheap

我认为方法调用语法是更好的风格,因为它暗示了昂贵计算的可能性,而属性语法暗示了快速查找。

[更新:我之前链接并引用的基于类的记忆化装饰器不适用于方法。我用decorator函数替换了它。如果你愿意使用通用的记忆装饰器,这里有一个简单的:

def memoize(function):
  memo = {}
  def wrapper(*args):
    if args in memo:
      return memo[args]
    else:
      rv = function(*args)
      memo[args] = rv
      return rv
  return wrapper

使用示例:

@memoize
def fibonacci(n):
  if n < 2: return n
  return fibonacci(n - 1) + fibonacci(n - 2)

可以在这里找到另一个对缓存大小有限制的内存装饰器。