考虑以下几点:

@property
def name(self):

    if not hasattr(self, '_name'):

        # expensive calculation
        self._name = 1 + 1

    return self._name

我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)

PS,真正的计算不依赖于可变值


当前回答

fastcache,这是Python 3 functools.lru_cache的C实现。提供10-30倍于标准库的加速。”

和选择的答案一样,只是导入不同:

from fastcache import lru_cache
@lru_cache(maxsize=128, typed=False)
def f(a, b):
    pass

此外,它安装在Anaconda中,不像functools需要安装。

其他回答

在Python Wiki中还有另一个备忘录装饰器的例子:

http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)

除了Memoize示例,我还找到了以下python包:

cachepy;它允许设置ttl和\或缓存函数的调用次数;此外,还可以使用加密的基于文件的缓存… percache

@lru_cache不适合默认attrs

我的@mem装饰:

import inspect
from copy import deepcopy
from functools import lru_cache, wraps
from typing import Any, Callable, Dict, Iterable


# helper
def get_all_kwargs_values(f: Callable, kwargs: Dict[str, Any]) -> Iterable[Any]:
    default_kwargs = {
        k: v.default
        for k, v in inspect.signature(f).parameters.items()
        if v.default is not inspect.Parameter.empty
    }

    all_kwargs = deepcopy(default_kwargs)
    all_kwargs.update(kwargs)

    for key in sorted(all_kwargs.keys()):
        yield all_kwargs[key]


# the best decorator
def mem(func: Callable) -> Callable:
    cache = dict()

    @wraps(func)
    def wrapper(*args, **kwargs) -> Any:
        all_kwargs_values = get_all_kwargs_values(func, kwargs)
        params = (*args, *all_kwargs_values)
        _hash = hash(params)

        if _hash not in cache:
            cache[_hash] = func(*args, **kwargs)

        return cache[_hash]

    return wrapper


# some logic
def counter(*args) -> int:
    print(f'* not_cached:', end='\t')
    return sum(args)


@mem
def check_mem(a, *args, z=10) -> int:
    return counter(a, *args, z)


@lru_cache
def check_lru(a, *args, z=10) -> int:
    return counter(a, *args, z)


def test(func) -> None:
    print(f'\nTest {func.__name__}:')

    print('*', func(1, 2, 3, 4, 5))
    print('*', func(1, 2, 3, 4, 5))
    print('*', func(1, 2, 3, 4, 5, z=6))
    print('*', func(1, 2, 3, 4, 5, z=6))
    print('*', func(1))
    print('*', func(1, z=10))


def main():
    test(check_mem)
    test(check_lru)


if __name__ == '__main__':
    main()

输出:

Test check_mem:
* not_cached:   * 25
* 25
* not_cached:   * 21
* 21
* not_cached:   * 11
* 11

Test check_lru:
* not_cached:   * 25
* 25
* not_cached:   * 21
* 21
* not_cached:   * 11
* not_cached:   * 11

尝试joblib https://joblib.readthedocs.io/en/latest/memory.html

from joblib import Memory
memory = Memory(cachedir=cachedir, verbose=0)
@memory.cache
    def f(x):
        print('Running f(%s)' % x)
        return x

Werkzeug有一个cached_property装饰器(docs, source)