我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?


当前回答

我应该先回答第一部分:什么是记忆?

这只是一种用记忆换取时间的方法。想想乘法表。

在Python中使用可变对象作为默认值通常被认为是不好的。但如果明智地使用它,它实际上可以用于实现记忆。

下面是一个摘自http://docs.python.org/2/faq/design.html#why-are-default-values-shared-between-objects的例子

在函数定义中使用可变dict,中间计算结果可以被缓存(例如,在计算阶乘(9)后计算阶乘(10)时,我们可以重用所有中间结果)

def factorial(n, _cache={1:1}):    
    try:            
        return _cache[n]           
    except IndexError:
        _cache[n] = factorial(n-1)*n
        return _cache[n]

其他回答

与传递关键字参数的顺序无关的位置参数和关键字参数的解决方案(使用inspect.getargspec):

import inspect
import functools

def memoize(fn):
    cache = fn.cache = {}
    @functools.wraps(fn)
    def memoizer(*args, **kwargs):
        kwargs.update(dict(zip(inspect.getargspec(fn).args, args)))
        key = tuple(kwargs.get(k, None) for k in inspect.getargspec(fn).args)
        if key not in cache:
            cache[key] = fn(**kwargs)
        return cache[key]
    return memoizer

类似的问题:在Python中识别用于内存化的等效可变参数函数调用

记忆是将函数转换为数据结构的过程。通常,人们希望增量地、惰性地进行转换(根据给定的域元素——或“键”的要求)。在惰性函数语言中,这种惰性转换可以自动发生,因此可以在没有(显式)副作用的情况下实现内存化。

functools。缓存装饰:

Python 3.9发布了一个新函数functools.cache。它在内存中缓存带有一组特定参数的函数调用的结果,这就是内存化。它很容易使用:

import functools
import time

@functools.cache
def calculate_double(num):
    time.sleep(1) # sleep for 1 second to simulate a slow calculation
    return num * 2

第一次调用caculate_double(5)时,它将花费一秒钟并返回10。第二次使用相同的参数calculate_double(5)调用该函数时,它将立即返回10。

添加缓存装饰器可以确保如果函数最近为某个特定值被调用,它将不会重新计算该值,而是使用先前缓存的结果。在这种情况下,它可以极大地提高速度,同时代码不会因为缓存的细节而变得混乱。

(编辑:前面的示例使用递归计算了斐波那契数,但我修改了示例以防止混淆,因此出现了旧的注释。)

functools。lru_cache装饰:

如果您需要支持旧版本的Python,请使用functools。lru_cache适用于Python 3.2+。默认情况下,它只缓存最近使用的128个调用,但你可以将maxsize设置为None来指示缓存永远不会过期:

@functools.lru_cache(maxsize=None)
def calculate_double(num):
    # etc

记忆是保留昂贵的计算结果并返回缓存的结果,而不是不断地重新计算它。

这里有一个例子:

def doSomeExpensiveCalculation(self, input):
    if input not in self.cache:
        <do expensive calculation>
        self.cache[input] = result
    return self.cache[input]

更完整的描述可以在维基百科关于记忆的条目中找到。

记忆基本上是保存用递归算法完成的过去操作的结果,以便在以后需要进行相同的计算时减少遍历递归树的需要。

参见http://scriptbucket.wordpress.com/2012/12/11/introduction-to-memoization/

Python中的斐波那契内存示例:

fibcache = {}
def fib(num):
    if num in fibcache:
        return fibcache[num]
    else:
        fibcache[num] = num if num < 2 else fib(num-1) + fib(num-2)
        return fibcache[num]