我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?
当前回答
cache = {}
def fib(n):
if n <= 1:
return n
else:
if n not in cache:
cache[n] = fib(n-1) + fib(n-2)
return cache[n]
其他回答
记忆基本上是保存用递归算法完成的过去操作的结果,以便在以后需要进行相同的计算时减少遍历递归树的需要。
参见http://scriptbucket.wordpress.com/2012/12/11/introduction-to-memoization/
Python中的斐波那契内存示例:
fibcache = {}
def fib(num):
if num in fibcache:
return fibcache[num]
else:
fibcache[num] = num if num < 2 else fib(num-1) + fib(num-2)
return fibcache[num]
cache = {}
def fib(n):
if n <= 1:
return n
else:
if n not in cache:
cache[n] = fib(n-1) + fib(n-2)
return cache[n]
不要忘记内置的hasattr函数,对于那些想要手工制作的人来说。这样就可以将mem缓存保存在函数定义中(而不是全局缓存)。
def fact(n):
if not hasattr(fact, 'mem'):
fact.mem = {1: 1}
if not n in fact.mem:
fact.mem[n] = n * fact(n - 1)
return fact.mem[n]
与传递关键字参数的顺序无关的位置参数和关键字参数的解决方案(使用inspect.getargspec):
import inspect
import functools
def memoize(fn):
cache = fn.cache = {}
@functools.wraps(fn)
def memoizer(*args, **kwargs):
kwargs.update(dict(zip(inspect.getargspec(fn).args, args)))
key = tuple(kwargs.get(k, None) for k in inspect.getargspec(fn).args)
if key not in cache:
cache[key] = fn(**kwargs)
return cache[key]
return memoizer
类似的问题:在Python中识别用于内存化的等效可变参数函数调用
下面是一个解决方案,将工作与列表或dict类型参数没有抱怨:
def memoize(fn):
"""returns a memoized version of any function that can be called
with the same list of arguments.
Usage: foo = memoize(foo)"""
def handle_item(x):
if isinstance(x, dict):
return make_tuple(sorted(x.items()))
elif hasattr(x, '__iter__'):
return make_tuple(x)
else:
return x
def make_tuple(L):
return tuple(handle_item(x) for x in L)
def foo(*args, **kwargs):
items_cache = make_tuple(sorted(kwargs.items()))
args_cache = make_tuple(args)
if (args_cache, items_cache) not in foo.past_calls:
foo.past_calls[(args_cache, items_cache)] = fn(*args,**kwargs)
return foo.past_calls[(args_cache, items_cache)]
foo.past_calls = {}
foo.__name__ = 'memoized_' + fn.__name__
return foo
请注意,通过在handle_item中实现您自己的哈希函数,这种方法可以自然地扩展到任何对象。例如,为了使这种方法适用于一个接受set作为输入参数的函数,你可以在handle_item中添加:
if is_instance(x, set):
return make_tuple(sorted(list(x)))
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录
- 熊猫数据帧得到每组的第一行