我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?
当前回答
记忆是将函数转换为数据结构的过程。通常,人们希望增量地、惰性地进行转换(根据给定的域元素——或“键”的要求)。在惰性函数语言中,这种惰性转换可以自动发生,因此可以在没有(显式)副作用的情况下实现内存化。
其他回答
如果要考虑速度:
@functools。cache和@functools.lru_cache(maxsize=None)同样快,在我的系统上循环一百万次需要0.122秒(最好运行15次) 全局缓存变量要慢得多,在我的系统上循环一百万次需要0.180秒(最好运行15次) 一个自我。缓存类变量仍然有点慢,在我的系统上循环一百万次需要0.214秒(最好运行15次)
后两者的实现方式与目前投票最多的答案中描述的类似。
这没有防止内存耗尽,也就是说,我没有在类或全局方法中添加代码来限制缓存的大小,这真的是最基本的实现。如果需要的话,lru_cache方法可以免费提供。
对我来说,一个悬而未决的问题是如何对具有functools装饰器的东西进行单元测试。是否有可能以某种方式清空缓存?单元测试似乎使用class方法(在这里您可以为每个测试实例化一个新类)或全局变量方法(因为您可以使用您的rimportedmodule)是最干净的。Cachevariable ={}来清空它)。
我应该先回答第一部分:什么是记忆?
这只是一种用记忆换取时间的方法。想想乘法表。
在Python中使用可变对象作为默认值通常被认为是不好的。但如果明智地使用它,它实际上可以用于实现记忆。
下面是一个摘自http://docs.python.org/2/faq/design.html#why-are-default-values-shared-between-objects的例子
在函数定义中使用可变dict,中间计算结果可以被缓存(例如,在计算阶乘(9)后计算阶乘(10)时,我们可以重用所有中间结果)
def factorial(n, _cache={1:1}):
try:
return _cache[n]
except IndexError:
_cache[n] = factorial(n-1)*n
return _cache[n]
只是想对已经提供的答案进行补充,Python装饰器库有一些简单但有用的实现,也可以记住“不可哈希类型”,不像functools.lru_cache。
记忆实际上是指根据方法输入记住(“记忆”→“备忘录”→被记住)方法调用的结果,然后返回记住的结果,而不是重新计算结果。您可以把它看作是方法结果的缓存。更多详细信息,请参阅第387页的算法介绍(3e), Cormen等人的定义。
在Python中使用内存计算阶乘的简单示例如下:
factorial_memo = {}
def factorial(k):
if k < 2: return 1
if k not in factorial_memo:
factorial_memo[k] = k * factorial(k-1)
return factorial_memo[k]
你可以做得更复杂一些,把记忆过程封装到一个类中:
class Memoize:
def __init__(self, f):
self.f = f
self.memo = {}
def __call__(self, *args):
if not args in self.memo:
self.memo[args] = self.f(*args)
#Warning: You may wish to do a deepcopy here if returning objects
return self.memo[args]
然后:
def factorial(k):
if k < 2: return 1
return k * factorial(k - 1)
factorial = Memoize(factorial)
Python 2.4中添加了一个被称为“装饰器”的特性,它允许你现在简单地编写以下代码来完成同样的事情:
@Memoize
def factorial(k):
if k < 2: return 1
return k * factorial(k - 1)
Python装饰器库有一个类似的装饰器,称为memoized,它比这里显示的Memoize类稍微健壮一些。
下面是一个解决方案,将工作与列表或dict类型参数没有抱怨:
def memoize(fn):
"""returns a memoized version of any function that can be called
with the same list of arguments.
Usage: foo = memoize(foo)"""
def handle_item(x):
if isinstance(x, dict):
return make_tuple(sorted(x.items()))
elif hasattr(x, '__iter__'):
return make_tuple(x)
else:
return x
def make_tuple(L):
return tuple(handle_item(x) for x in L)
def foo(*args, **kwargs):
items_cache = make_tuple(sorted(kwargs.items()))
args_cache = make_tuple(args)
if (args_cache, items_cache) not in foo.past_calls:
foo.past_calls[(args_cache, items_cache)] = fn(*args,**kwargs)
return foo.past_calls[(args_cache, items_cache)]
foo.past_calls = {}
foo.__name__ = 'memoized_' + fn.__name__
return foo
请注意,通过在handle_item中实现您自己的哈希函数,这种方法可以自然地扩展到任何对象。例如,为了使这种方法适用于一个接受set作为输入参数的函数,你可以在handle_item中添加:
if is_instance(x, set):
return make_tuple(sorted(list(x)))
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录
- 熊猫数据帧得到每组的第一行