我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?


当前回答

functools。缓存装饰:

Python 3.9发布了一个新函数functools.cache。它在内存中缓存带有一组特定参数的函数调用的结果,这就是内存化。它很容易使用:

import functools
import time

@functools.cache
def calculate_double(num):
    time.sleep(1) # sleep for 1 second to simulate a slow calculation
    return num * 2

第一次调用caculate_double(5)时,它将花费一秒钟并返回10。第二次使用相同的参数calculate_double(5)调用该函数时,它将立即返回10。

添加缓存装饰器可以确保如果函数最近为某个特定值被调用,它将不会重新计算该值,而是使用先前缓存的结果。在这种情况下,它可以极大地提高速度,同时代码不会因为缓存的细节而变得混乱。

(编辑:前面的示例使用递归计算了斐波那契数,但我修改了示例以防止混淆,因此出现了旧的注释。)

functools。lru_cache装饰:

如果您需要支持旧版本的Python,请使用functools。lru_cache适用于Python 3.2+。默认情况下,它只缓存最近使用的128个调用,但你可以将maxsize设置为None来指示缓存永远不会过期:

@functools.lru_cache(maxsize=None)
def calculate_double(num):
    # etc

其他回答

cache = {}
def fib(n):
    if n <= 1:
        return n
    else:
        if n not in cache:
            cache[n] = fib(n-1) + fib(n-2)
        return cache[n]

记忆是将函数转换为数据结构的过程。通常,人们希望增量地、惰性地进行转换(根据给定的域元素——或“键”的要求)。在惰性函数语言中,这种惰性转换可以自动发生,因此可以在没有(显式)副作用的情况下实现内存化。

其他答案很好地涵盖了它的本质。我不是在重复。只是一些可能对你有用的观点。

通常,memoisation是一种可以应用在任何函数上的操作,该函数计算一些东西(昂贵的)并返回一个值。因此,它通常被实现为一个装饰器。实现很简单,大概是这样的

memoised_function = memoise(actual_function)

或者表示为装饰者

@memoise
def actual_function(arg1, arg2):
   #body

functools。缓存装饰:

Python 3.9发布了一个新函数functools.cache。它在内存中缓存带有一组特定参数的函数调用的结果,这就是内存化。它很容易使用:

import functools
import time

@functools.cache
def calculate_double(num):
    time.sleep(1) # sleep for 1 second to simulate a slow calculation
    return num * 2

第一次调用caculate_double(5)时,它将花费一秒钟并返回10。第二次使用相同的参数calculate_double(5)调用该函数时,它将立即返回10。

添加缓存装饰器可以确保如果函数最近为某个特定值被调用,它将不会重新计算该值,而是使用先前缓存的结果。在这种情况下,它可以极大地提高速度,同时代码不会因为缓存的细节而变得混乱。

(编辑:前面的示例使用递归计算了斐波那契数,但我修改了示例以防止混淆,因此出现了旧的注释。)

functools。lru_cache装饰:

如果您需要支持旧版本的Python,请使用functools。lru_cache适用于Python 3.2+。默认情况下,它只缓存最近使用的128个调用,但你可以将maxsize设置为None来指示缓存永远不会过期:

@functools.lru_cache(maxsize=None)
def calculate_double(num):
    # etc

只是想对已经提供的答案进行补充,Python装饰器库有一些简单但有用的实现,也可以记住“不可哈希类型”,不像functools.lru_cache。