我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?


当前回答

只是想对已经提供的答案进行补充,Python装饰器库有一些简单但有用的实现,也可以记住“不可哈希类型”,不像functools.lru_cache。

其他回答

记忆是将函数转换为数据结构的过程。通常,人们希望增量地、惰性地进行转换(根据给定的域元素——或“键”的要求)。在惰性函数语言中,这种惰性转换可以自动发生,因此可以在没有(显式)副作用的情况下实现内存化。

我发现这非常有用

from functools import wraps


def memoize(function):    
    memo = {}
        
    @wraps(function)
    def wrapper(*args):

        # add the new key to dict if it doesn't exist already  
        if args not in memo:
            memo[args] = function(*args)

        return memo[args]

    return wrapper
    
    
@memoize
def fibonacci(n):
    if n < 2: return n
    return fibonacci(n - 1) + fibonacci(n - 2)
    
fibonacci(25)

其他答案很好地涵盖了它的本质。我不是在重复。只是一些可能对你有用的观点。

通常,memoisation是一种可以应用在任何函数上的操作,该函数计算一些东西(昂贵的)并返回一个值。因此,它通常被实现为一个装饰器。实现很简单,大概是这样的

memoised_function = memoise(actual_function)

或者表示为装饰者

@memoise
def actual_function(arg1, arg2):
   #body

不要忘记内置的hasattr函数,对于那些想要手工制作的人来说。这样就可以将mem缓存保存在函数定义中(而不是全局缓存)。

def fact(n):
    if not hasattr(fact, 'mem'):
        fact.mem = {1: 1}
    if not n in fact.mem:
        fact.mem[n] = n * fact(n - 1)
    return fact.mem[n]

与传递关键字参数的顺序无关的位置参数和关键字参数的解决方案(使用inspect.getargspec):

import inspect
import functools

def memoize(fn):
    cache = fn.cache = {}
    @functools.wraps(fn)
    def memoizer(*args, **kwargs):
        kwargs.update(dict(zip(inspect.getargspec(fn).args, args)))
        key = tuple(kwargs.get(k, None) for k in inspect.getargspec(fn).args)
        if key not in cache:
            cache[key] = fn(**kwargs)
        return cache[key]
    return memoizer

类似的问题:在Python中识别用于内存化的等效可变参数函数调用