给定两个包含范围[x1:x2]和[y1:y2],其中x1≤x2和y1≤y2,测试这两个范围是否有重叠的最有效方法是什么?

一个简单的实现如下:

bool testOverlap(int x1, int x2, int y1, int y2) {
  return (x1 >= y1 && x1 <= y2) ||
         (x2 >= y1 && x2 <= y2) ||
         (y1 >= x1 && y1 <= x2) ||
         (y2 >= x1 && y2 <= x2);
}

但是我希望有更有效的方法来计算这个。

就最少的操作而言,哪种方法是最有效的?


当前回答

这很容易扭曲正常人的大脑,所以我找到了一个更容易理解的视觉方法:

勒解释

如果两个范围“太胖”,无法放入正好是两者宽度之和的槽中,那么它们就会重叠。

对于范围[a1, a2]和[b1, b2],这将是:

/**
 * we are testing for:
 *     max point - min point < w1 + w2    
 **/
if max(a2, b2) - min(a1, b1) < (a2 - a1) + (b2 - b1) {
  // too fat -- they overlap!
}

其他回答

我相信min(upper(A),upper(B))>=max(lower(A),lower(B))将是一个很好的解决方案,不仅因为它的简单性,而且因为它超越了两个范围的可扩展性。

值域重叠是什么意思?这意味着存在一个在两个范围内的数C,即。

x1 <= C <= x2

and

y1 <= C <= y2

为了避免混淆,考虑范围为: [x1:x2]和[y1:y2]

现在,如果我们可以假设范围是构造良好的(因此x1 <= x2和y1 <= y2),那么就足以进行测试

x1 <= y2 && y1 <= x2

OR

(StartA <= EndB)和(EndA >= StartB)

考虑到: (x1, x2) (y1, y2) 那么x1 <= y2 || x2 >= y1总是成立的。 作为

      x1 ... x2
y1 .... y2

如果是x1 > y2,那么它们不重叠 或

x1 ... x2
    y1 ... y2

如果x2 < y1,它们不重叠。

从开始的最大值减去范围末端的最小值似乎可以达到目的。如果结果小于等于零,就有重叠。这很直观:

以下是我的看法:

int xmin = min(x1,x2)
  , xmax = max(x1,x2)
  , ymin = min(y1,y2)
  , ymax = max(y1,y2);

for (int i = xmin; i < xmax; ++i)
    if (ymin <= i && i <= ymax)
        return true;

return false;

除非您正在对数十亿个宽间距整数运行一些高性能的范围检查器,否则我们的版本应该执行类似的操作。我的观点是,这是微观优化。