我一直是一个简单使用的人:
List<String> names = new ArrayList<>();
我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。
LinkedList何时应用于ArrayList,反之亦然?
我一直是一个简单使用的人:
List<String> names = new ArrayList<>();
我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。
LinkedList何时应用于ArrayList,反之亦然?
当前回答
我在这里看到的一个测试只进行一次测试。但我注意到的是,您需要多次运行这些测试,最终它们的时间会收敛。基本上JVM需要预热。对于我的特定用例,我需要向列表中添加/删除项目,该列表将增加到大约500个项目。在我的测试中,LinkedList的发布速度更快,LinkedList约为50000 NS,ArrayList约为90000NS。。。给予或索取。请参见下面的代码。
public static void main(String[] args) {
List<Long> times = new ArrayList<>();
for (int i = 0; i < 100; i++) {
times.add(doIt());
}
System.out.println("avg = " + (times.stream().mapToLong(x -> x).average()));
}
static long doIt() {
long start = System.nanoTime();
List<Object> list = new LinkedList<>();
//uncomment line below to test with ArrayList
//list = new ArrayList<>();
for (int i = 0; i < 500; i++) {
list.add(i);
}
Iterator it = list.iterator();
while (it.hasNext()) {
it.next();
it.remove();
}
long end = System.nanoTime();
long diff = end - start;
//uncomment to see the JVM warmup and get faster for the first few iterations
//System.out.println(diff)
return diff;
}
其他回答
让我们将LinkedList和ArrayList与以下参数进行比较:
1.实施
ArrayList是列表接口的可调整大小的数组实现,而LinkedList是列表接口的双重链接列表实现。
2.性能
get(int索引)或搜索操作ArrayList get(int索引)操作在恒定时间内运行,即O(1)而LinkedList get(int索引)操作运行时间为O(n)。ArrayList比LinkedList更快的原因是ArrayList对其元素使用基于索引的系统,LinkedList不为其元素提供基于索引的访问,因为它从开始或结束(以较近者为准)迭代以检索指定元素索引处的节点。insert()或add(Object)操作与ArrayList相比,LinkedList中的插入通常很快。在LinkedList中,添加或插入是O(1)操作。在ArrayList中,如果数组已满(即最坏情况),则调整数组大小并将元素复制到新数组会产生额外的成本,这使得ArrayList的加法运算运行时为O(n),否则为O(1)。删除(int)操作LinkedList中的移除操作通常与ArrayList相同,即O(n)。在LinkedList中,有两个重载的移除方法。一个是remove(),没有任何参数,它会删除列表的头部,并在恒定时间O(1)内运行。LinkedList中的另一个重载remove方法是remove(int)或remove(Object),它删除作为参数传递的Object或int。此方法遍历LinkedList,直到找到Object并将其从原始列表中取消链接。因此,该方法运行时为O(n)。在ArrayList中,remove(int)方法涉及将元素从旧数组复制到新的更新数组,因此其运行时为O(n)。
3.反向迭代器
LinkedList可以使用descendingIterator()反向迭代,同时ArrayList中没有descendingIterator(),因此我们需要编写自己的代码以反向遍历ArrayList。
4.初始容量
如果构造函数没有重载,那么ArrayList将创建一个初始容量为10的空列表,而LinkedList只构建没有任何初始容量的空列表。
5.内存开销
与ArrayList相比,LinkedList中的内存开销更大,因为LinkedList的节点需要维护下一个和上一个节点的地址。虽然在ArrayList中,每个索引仅保存实际对象(数据)。
来源
ArrayList扩展了AbstractList并实现了List接口。ArrayList是动态数组。可以说,它的创建基本上是为了克服数组的缺点LinkedList类扩展了AbstractSequentialList并实现了List、Deque和Queue接口。表演arraylist.get()是O(1),而linkedlist.getarraylist.add()为O(1),linkedlist.add)为0(1)arraylist.contains()为O(n),linkedlist.contans()为0(n)arraylist.next()为O(1),linkedlist.next()为0(1)arraylist.remove()是O(n),而linkedlist.remove()是0(1)在arraylistiterator.remove()是O(n),而在linkedlist迭代器.remove
TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。
理论上,LinkedList的add(E元素)有一个O(1)
此外,在列表中间添加元素应该非常有效。
实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。
以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):
使用新一代硬件(更大、更高效的缓存),结果更为确凿:
LinkedList需要更多的时间来完成相同的任务。源源代码
这主要有两个原因:
主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。
顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。
需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms
来源:每个程序员都应该知道的延迟数
为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:
注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码
复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效
致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据
对于ArrayList和LinkedList,remove()和insert()的运行时效率都为O(n)。然而,线性处理时间背后的原因来自两个非常不同的原因:
在ArrayList中,您可以找到O(1)中的元素,但实际上删除或插入某些元素会使其成为O(n),因为以下所有元素都需要更改。
在LinkedList中,实际到达所需元素需要O(n),因为我们必须从一开始就开始,直到达到所需的索引。实际上,移除或插入是常量,因为我们只需要为remove()更改1个引用,为insert()更改2个引用。
插入和删除这两项中的哪一项更快取决于发生的位置。如果我们更接近开始,LinkedList将更快,因为我们必须经过相对较少的元素。如果我们接近末尾,ArrayList将更快,因为我们在恒定的时间内到达那里,只需更改紧随其后的几个剩余元素。如果正好在中间完成,LinkedList将更快速,因为遍历n个元素比移动n个值更快。
好处:虽然无法为ArrayList创建这两个方法O(1),但实际上在LinkedList中有一种方法可以做到这一点。假设我们想在整个列表中删除和插入元素。通常,您可以使用LinkedList从头开始每个元素,我们也可以使用迭代器“保存”当前正在处理的元素。在迭代器的帮助下,当在LinkedList中工作时,remove()和insert()的效率为O(1)。使其成为我所知的唯一性能优势,LinkedList总是优于ArrayList。
见原始答案下方作者的2021更新。
原答案(2011年)
作为一个在非常大规模的SOA web服务上做了大约十年操作性能工程的人,我更喜欢LinkedList而不是ArrayList的行为。虽然LinkedList的稳态吞吐量更差,因此可能会导致购买更多硬件,但ArrayList在压力下的行为可能会导致集群中的应用程序以近乎同步的方式扩展其阵列,而对于较大的阵列大小,可能会导致应用程序缺乏响应能力,在压力下停机,这是灾难性的行为。
类似地,您可以从默认的吞吐量固定垃圾收集器中获得更好的应用吞吐量,但一旦您获得了具有10GB堆的java应用程序,您就可以在完全GC期间锁定应用程序25秒,这会导致SOA应用程序超时和失败,如果太频繁,还会破坏SLA。尽管CMS收集器占用了更多的资源,并且没有实现相同的原始吞吐量,但它是一个更好的选择,因为它具有更可预测性和更小的延迟。
如果您所指的性能是吞吐量,并且可以忽略延迟,那么ArrayList只是性能的更好选择。根据我的工作经验,我不能忽视最坏情况下的延迟。
更新(2021 8月27日——10年后)
这个答案(也是我在SO问题上最受欢迎的答案)很可能是错误的(原因在下面的评论中概述)。我想补充一点,ArrayList将优化内存的顺序读取,并最小化缓存线和TLB未命中等。相比之下,当阵列增长超过边界时的复制开销可能无关紧要(可以通过高效的CPU操作完成)。考虑到硬件趋势,随着时间的推移,这个答案可能会变得更糟。LinkedList可能有意义的唯一情况是,如果您有数千个列表,其中任何一个都可能增长到GB大小,但在分配列表时无法做出正确的猜测,并且将它们全部设置为GB大小,则会炸毁堆。如果你发现了这样的问题,那么无论你的解决方案是什么,都需要重新设计(我不想轻率地建议重新设计旧代码,因为我自己维护了一堆又一堆的旧代码,但这是一个很好的例子,因为原始设计已经过时,确实需要扔掉)。尽管如此,我还是会把我几十年来的糟糕观点留在那里,让你读一读。简单、合乎逻辑,而且非常错误。