我一直是一个简单使用的人:

List<String> names = new ArrayList<>();

我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。

LinkedList何时应用于ArrayList,反之亦然?


当前回答

让我们将LinkedList和ArrayList与以下参数进行比较:

1.实施

ArrayList是列表接口的可调整大小的数组实现,而LinkedList是列表接口的双重链接列表实现。


2.性能

get(int索引)或搜索操作ArrayList get(int索引)操作在恒定时间内运行,即O(1)而LinkedList get(int索引)操作运行时间为O(n)。ArrayList比LinkedList更快的原因是ArrayList对其元素使用基于索引的系统,LinkedList不为其元素提供基于索引的访问,因为它从开始或结束(以较近者为准)迭代以检索指定元素索引处的节点。insert()或add(Object)操作与ArrayList相比,LinkedList中的插入通常很快。在LinkedList中,添加或插入是O(1)操作。在ArrayList中,如果数组已满(即最坏情况),则调整数组大小并将元素复制到新数组会产生额外的成本,这使得ArrayList的加法运算运行时为O(n),否则为O(1)。删除(int)操作LinkedList中的移除操作通常与ArrayList相同,即O(n)。在LinkedList中,有两个重载的移除方法。一个是remove(),没有任何参数,它会删除列表的头部,并在恒定时间O(1)内运行。LinkedList中的另一个重载remove方法是remove(int)或remove(Object),它删除作为参数传递的Object或int。此方法遍历LinkedList,直到找到Object并将其从原始列表中取消链接。因此,该方法运行时为O(n)。在ArrayList中,remove(int)方法涉及将元素从旧数组复制到新的更新数组,因此其运行时为O(n)。


3.反向迭代器

LinkedList可以使用descendingIterator()反向迭代,同时ArrayList中没有descendingIterator(),因此我们需要编写自己的代码以反向遍历ArrayList。


4.初始容量

如果构造函数没有重载,那么ArrayList将创建一个初始容量为10的空列表,而LinkedList只构建没有任何初始容量的空列表。


5.内存开销

与ArrayList相比,LinkedList中的内存开销更大,因为LinkedList的节点需要维护下一个和上一个节点的地址。虽然在ArrayList中,每个索引仅保存实际对象(数据)。


来源

其他回答

ArrayList扩展了AbstractList并实现了List接口。ArrayList是动态数组。可以说,它的创建基本上是为了克服数组的缺点LinkedList类扩展了AbstractSequentialList并实现了List、Deque和Queue接口。表演arraylist.get()是O(1),而linkedlist.getarraylist.add()为O(1),linkedlist.add)为0(1)arraylist.contains()为O(n),linkedlist.contans()为0(n)arraylist.next()为O(1),linkedlist.next()为0(1)arraylist.remove()是O(n),而linkedlist.remove()是0(1)在arraylistiterator.remove()是O(n),而在linkedlist迭代器.remove

正确或不正确:请在本地执行测试并自行决定!

LinkedList中的编辑/删除速度比ArrayList快。

Array支持的ArrayList需要两倍的大小,在大容量应用程序中更糟糕。

以下是每个操作的单元测试结果。计时单位为纳秒。


Operation                       ArrayList                      LinkedList  

AddAll   (Insert)               101,16719                      2623,29291 

Add      (Insert-Sequentially)  152,46840                      966,62216

Add      (insert-randomly)      36527                          29193

remove   (Delete)               20,56,9095                     20,45,4904

contains (Search)               186,15,704                     189,64,981

代码如下:

import org.junit.Assert;
import org.junit.Test;

import java.util.*;

public class ArrayListVsLinkedList {
    private static final int MAX = 500000;
    String[] strings = maxArray();

    ////////////// ADD ALL ////////////////////////////////////////
    @Test
    public void arrayListAddAll() {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX);

        watch.start();
        arrayList.addAll(stringList);
        watch.totalTime("Array List addAll() = ");//101,16719 Nanoseconds
    }

    @Test
    public void linkedListAddAll() throws Exception {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);

        watch.start();
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(stringList);
        watch.totalTime("Linked List addAll() = ");  //2623,29291 Nanoseconds
    }

    //Note: ArrayList is 26 time faster here than LinkedList for addAll()

    ///////////////// INSERT /////////////////////////////////////////////
    @Test
    public void arrayListAdd() {
        Watch watch = new Watch();
        List<String> arrayList = new ArrayList<String>(MAX);

        watch.start();
        for (String string : strings)
            arrayList.add(string);
        watch.totalTime("Array List add() = ");//152,46840 Nanoseconds
    }

    @Test
    public void linkedListAdd() {
        Watch watch = new Watch();

        List<String> linkedList = new LinkedList<String>();
        watch.start();
        for (String string : strings)
            linkedList.add(string);
        watch.totalTime("Linked List add() = ");  //966,62216 Nanoseconds
    }

    //Note: ArrayList is 9 times faster than LinkedList for add sequentially

    /////////////////// INSERT IN BETWEEN ///////////////////////////////////////

    @Test
    public void arrayListInsertOne() {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX + MAX / 10);
        arrayList.addAll(stringList);

        String insertString0 = getString(true, MAX / 2 + 10);
        String insertString1 = getString(true, MAX / 2 + 20);
        String insertString2 = getString(true, MAX / 2 + 30);
        String insertString3 = getString(true, MAX / 2 + 40);

        watch.start();

        arrayList.add(insertString0);
        arrayList.add(insertString1);
        arrayList.add(insertString2);
        arrayList.add(insertString3);

        watch.totalTime("Array List add() = ");//36527
    }

    @Test
    public void linkedListInsertOne() {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(stringList);

        String insertString0 = getString(true, MAX / 2 + 10);
        String insertString1 = getString(true, MAX / 2 + 20);
        String insertString2 = getString(true, MAX / 2 + 30);
        String insertString3 = getString(true, MAX / 2 + 40);

        watch.start();

        linkedList.add(insertString0);
        linkedList.add(insertString1);
        linkedList.add(insertString2);
        linkedList.add(insertString3);

        watch.totalTime("Linked List add = ");//29193
    }


    //Note: LinkedList is 3000 nanosecond faster than ArrayList for insert randomly.

    ////////////////// DELETE //////////////////////////////////////////////////////
    @Test
    public void arrayListRemove() throws Exception {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX);

        arrayList.addAll(stringList);
        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        arrayList.remove(searchString0);
        arrayList.remove(searchString1);
        watch.totalTime("Array List remove() = ");//20,56,9095 Nanoseconds
    }

    @Test
    public void linkedListRemove() throws Exception {
        Watch watch = new Watch();
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(Arrays.asList(strings));

        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        linkedList.remove(searchString0);
        linkedList.remove(searchString1);
        watch.totalTime("Linked List remove = ");//20,45,4904 Nanoseconds
    }

    //Note: LinkedList is 10 millisecond faster than ArrayList while removing item.

    ///////////////////// SEARCH ///////////////////////////////////////////
    @Test
    public void arrayListSearch() throws Exception {
        Watch watch = new Watch();
        List<String> stringList = Arrays.asList(strings);
        List<String> arrayList = new ArrayList<String>(MAX);

        arrayList.addAll(stringList);
        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        arrayList.contains(searchString0);
        arrayList.contains(searchString1);
        watch.totalTime("Array List addAll() time = ");//186,15,704
    }

    @Test
    public void linkedListSearch() throws Exception {
        Watch watch = new Watch();
        List<String> linkedList = new LinkedList<String>();
        linkedList.addAll(Arrays.asList(strings));

        String searchString0 = getString(true, MAX / 2 + 10);
        String searchString1 = getString(true, MAX / 2 + 20);

        watch.start();
        linkedList.contains(searchString0);
        linkedList.contains(searchString1);
        watch.totalTime("Linked List addAll() time = ");//189,64,981
    }

    //Note: Linked List is 500 Milliseconds faster than ArrayList

    class Watch {
        private long startTime;
        private long endTime;

        public void start() {
            startTime = System.nanoTime();
        }

        private void stop() {
            endTime = System.nanoTime();
        }

        public void totalTime(String s) {
            stop();
            System.out.println(s + (endTime - startTime));
        }
    }


    private String[] maxArray() {
        String[] strings = new String[MAX];
        Boolean result = Boolean.TRUE;
        for (int i = 0; i < MAX; i++) {
            strings[i] = getString(result, i);
            result = !result;
        }
        return strings;
    }

    private String getString(Boolean result, int i) {
        return String.valueOf(result) + i + String.valueOf(!result);
    }
}

是的,我知道,这是一个古老的问题,但我会投入我的两分钱:

LinkedList在性能方面几乎总是错误的选择。有一些非常具体的算法需要LinkedList,但这些算法非常非常罕见,并且该算法通常具体取决于LinkedLists在使用ListIterator导航到列表中间后相对快速地插入和删除元素的能力。

有一个常见的用例LinkedList优于ArrayList:队列。但是,如果您的目标是性能,那么您也应该考虑使用ArrayBlockingQueue(如果您可以提前确定队列大小的上限,并且能够提前分配所有内存),而不是LinkedList,或者使用CircularArray实现。(是的,它来自2001年,因此您需要对其进行一般化,但我得到的性能比与最近一篇JVM文章中引用的性能比相当)

TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。


理论上,LinkedList的add(E元素)有一个O(1)

此外,在列表中间添加元素应该非常有效。

实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。

以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):

使用新一代硬件(更大、更高效的缓存),结果更为确凿:

LinkedList需要更多的时间来完成相同的任务。源源代码

这主要有两个原因:

主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。

顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。

需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:

Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference                           0.5 ns
Branch mispredict                            5   ns
L2 cache reference                           7   ns                      14x L1 cache
Mutex lock/unlock                           25   ns
Main memory reference                      100   ns                      20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy             3,000   ns        3 us
Send 1K bytes over 1 Gbps network       10,000   ns       10 us
Read 4K randomly from SSD*             150,000   ns      150 us          ~1GB/sec SSD
Read 1 MB sequentially from memory     250,000   ns      250 us
Round trip within same datacenter      500,000   ns      500 us
Read 1 MB sequentially from SSD*     1,000,000   ns    1,000 us    1 ms  ~1GB/sec SSD, 4X memory
Disk seek                           10,000,000   ns   10,000 us   10 ms  20x datacenter roundtrip
Read 1 MB sequentially from disk    20,000,000   ns   20,000 us   20 ms  80x memory, 20X SSD
Send packet CA->Netherlands->CA    150,000,000   ns  150,000 us  150 ms

来源:每个程序员都应该知道的延迟数

为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:

注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码

复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效


致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据

除了上面的其他好参数之外,您应该注意到ArrayList实现了RandomAccess接口,而LinkedList实现了Queue。

因此,他们解决的问题略有不同,效率和行为有所不同(见他们的方法列表)。