我一直是一个简单使用的人:
List<String> names = new ArrayList<>();
我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。
LinkedList何时应用于ArrayList,反之亦然?
我一直是一个简单使用的人:
List<String> names = new ArrayList<>();
我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。
LinkedList何时应用于ArrayList,反之亦然?
当前回答
让我们将LinkedList和ArrayList与以下参数进行比较:
1.实施
ArrayList是列表接口的可调整大小的数组实现,而LinkedList是列表接口的双重链接列表实现。
2.性能
get(int索引)或搜索操作ArrayList get(int索引)操作在恒定时间内运行,即O(1)而LinkedList get(int索引)操作运行时间为O(n)。ArrayList比LinkedList更快的原因是ArrayList对其元素使用基于索引的系统,LinkedList不为其元素提供基于索引的访问,因为它从开始或结束(以较近者为准)迭代以检索指定元素索引处的节点。insert()或add(Object)操作与ArrayList相比,LinkedList中的插入通常很快。在LinkedList中,添加或插入是O(1)操作。在ArrayList中,如果数组已满(即最坏情况),则调整数组大小并将元素复制到新数组会产生额外的成本,这使得ArrayList的加法运算运行时为O(n),否则为O(1)。删除(int)操作LinkedList中的移除操作通常与ArrayList相同,即O(n)。在LinkedList中,有两个重载的移除方法。一个是remove(),没有任何参数,它会删除列表的头部,并在恒定时间O(1)内运行。LinkedList中的另一个重载remove方法是remove(int)或remove(Object),它删除作为参数传递的Object或int。此方法遍历LinkedList,直到找到Object并将其从原始列表中取消链接。因此,该方法运行时为O(n)。在ArrayList中,remove(int)方法涉及将元素从旧数组复制到新的更新数组,因此其运行时为O(n)。
3.反向迭代器
LinkedList可以使用descendingIterator()反向迭代,同时ArrayList中没有descendingIterator(),因此我们需要编写自己的代码以反向遍历ArrayList。
4.初始容量
如果构造函数没有重载,那么ArrayList将创建一个初始容量为10的空列表,而LinkedList只构建没有任何初始容量的空列表。
5.内存开销
与ArrayList相比,LinkedList中的内存开销更大,因为LinkedList的节点需要维护下一个和上一个节点的地址。虽然在ArrayList中,每个索引仅保存实际对象(数据)。
来源
其他回答
ArrayList扩展了AbstractList并实现了List接口。ArrayList是动态数组。可以说,它的创建基本上是为了克服数组的缺点LinkedList类扩展了AbstractSequentialList并实现了List、Deque和Queue接口。表演arraylist.get()是O(1),而linkedlist.getarraylist.add()为O(1),linkedlist.add)为0(1)arraylist.contains()为O(n),linkedlist.contans()为0(n)arraylist.next()为O(1),linkedlist.next()为0(1)arraylist.remove()是O(n),而linkedlist.remove()是0(1)在arraylistiterator.remove()是O(n),而在linkedlist迭代器.remove
正确或不正确:请在本地执行测试并自行决定!
LinkedList中的编辑/删除速度比ArrayList快。
Array支持的ArrayList需要两倍的大小,在大容量应用程序中更糟糕。
以下是每个操作的单元测试结果。计时单位为纳秒。
Operation ArrayList LinkedList
AddAll (Insert) 101,16719 2623,29291
Add (Insert-Sequentially) 152,46840 966,62216
Add (insert-randomly) 36527 29193
remove (Delete) 20,56,9095 20,45,4904
contains (Search) 186,15,704 189,64,981
代码如下:
import org.junit.Assert;
import org.junit.Test;
import java.util.*;
public class ArrayListVsLinkedList {
private static final int MAX = 500000;
String[] strings = maxArray();
////////////// ADD ALL ////////////////////////////////////////
@Test
public void arrayListAddAll() {
Watch watch = new Watch();
List<String> stringList = Arrays.asList(strings);
List<String> arrayList = new ArrayList<String>(MAX);
watch.start();
arrayList.addAll(stringList);
watch.totalTime("Array List addAll() = ");//101,16719 Nanoseconds
}
@Test
public void linkedListAddAll() throws Exception {
Watch watch = new Watch();
List<String> stringList = Arrays.asList(strings);
watch.start();
List<String> linkedList = new LinkedList<String>();
linkedList.addAll(stringList);
watch.totalTime("Linked List addAll() = "); //2623,29291 Nanoseconds
}
//Note: ArrayList is 26 time faster here than LinkedList for addAll()
///////////////// INSERT /////////////////////////////////////////////
@Test
public void arrayListAdd() {
Watch watch = new Watch();
List<String> arrayList = new ArrayList<String>(MAX);
watch.start();
for (String string : strings)
arrayList.add(string);
watch.totalTime("Array List add() = ");//152,46840 Nanoseconds
}
@Test
public void linkedListAdd() {
Watch watch = new Watch();
List<String> linkedList = new LinkedList<String>();
watch.start();
for (String string : strings)
linkedList.add(string);
watch.totalTime("Linked List add() = "); //966,62216 Nanoseconds
}
//Note: ArrayList is 9 times faster than LinkedList for add sequentially
/////////////////// INSERT IN BETWEEN ///////////////////////////////////////
@Test
public void arrayListInsertOne() {
Watch watch = new Watch();
List<String> stringList = Arrays.asList(strings);
List<String> arrayList = new ArrayList<String>(MAX + MAX / 10);
arrayList.addAll(stringList);
String insertString0 = getString(true, MAX / 2 + 10);
String insertString1 = getString(true, MAX / 2 + 20);
String insertString2 = getString(true, MAX / 2 + 30);
String insertString3 = getString(true, MAX / 2 + 40);
watch.start();
arrayList.add(insertString0);
arrayList.add(insertString1);
arrayList.add(insertString2);
arrayList.add(insertString3);
watch.totalTime("Array List add() = ");//36527
}
@Test
public void linkedListInsertOne() {
Watch watch = new Watch();
List<String> stringList = Arrays.asList(strings);
List<String> linkedList = new LinkedList<String>();
linkedList.addAll(stringList);
String insertString0 = getString(true, MAX / 2 + 10);
String insertString1 = getString(true, MAX / 2 + 20);
String insertString2 = getString(true, MAX / 2 + 30);
String insertString3 = getString(true, MAX / 2 + 40);
watch.start();
linkedList.add(insertString0);
linkedList.add(insertString1);
linkedList.add(insertString2);
linkedList.add(insertString3);
watch.totalTime("Linked List add = ");//29193
}
//Note: LinkedList is 3000 nanosecond faster than ArrayList for insert randomly.
////////////////// DELETE //////////////////////////////////////////////////////
@Test
public void arrayListRemove() throws Exception {
Watch watch = new Watch();
List<String> stringList = Arrays.asList(strings);
List<String> arrayList = new ArrayList<String>(MAX);
arrayList.addAll(stringList);
String searchString0 = getString(true, MAX / 2 + 10);
String searchString1 = getString(true, MAX / 2 + 20);
watch.start();
arrayList.remove(searchString0);
arrayList.remove(searchString1);
watch.totalTime("Array List remove() = ");//20,56,9095 Nanoseconds
}
@Test
public void linkedListRemove() throws Exception {
Watch watch = new Watch();
List<String> linkedList = new LinkedList<String>();
linkedList.addAll(Arrays.asList(strings));
String searchString0 = getString(true, MAX / 2 + 10);
String searchString1 = getString(true, MAX / 2 + 20);
watch.start();
linkedList.remove(searchString0);
linkedList.remove(searchString1);
watch.totalTime("Linked List remove = ");//20,45,4904 Nanoseconds
}
//Note: LinkedList is 10 millisecond faster than ArrayList while removing item.
///////////////////// SEARCH ///////////////////////////////////////////
@Test
public void arrayListSearch() throws Exception {
Watch watch = new Watch();
List<String> stringList = Arrays.asList(strings);
List<String> arrayList = new ArrayList<String>(MAX);
arrayList.addAll(stringList);
String searchString0 = getString(true, MAX / 2 + 10);
String searchString1 = getString(true, MAX / 2 + 20);
watch.start();
arrayList.contains(searchString0);
arrayList.contains(searchString1);
watch.totalTime("Array List addAll() time = ");//186,15,704
}
@Test
public void linkedListSearch() throws Exception {
Watch watch = new Watch();
List<String> linkedList = new LinkedList<String>();
linkedList.addAll(Arrays.asList(strings));
String searchString0 = getString(true, MAX / 2 + 10);
String searchString1 = getString(true, MAX / 2 + 20);
watch.start();
linkedList.contains(searchString0);
linkedList.contains(searchString1);
watch.totalTime("Linked List addAll() time = ");//189,64,981
}
//Note: Linked List is 500 Milliseconds faster than ArrayList
class Watch {
private long startTime;
private long endTime;
public void start() {
startTime = System.nanoTime();
}
private void stop() {
endTime = System.nanoTime();
}
public void totalTime(String s) {
stop();
System.out.println(s + (endTime - startTime));
}
}
private String[] maxArray() {
String[] strings = new String[MAX];
Boolean result = Boolean.TRUE;
for (int i = 0; i < MAX; i++) {
strings[i] = getString(result, i);
result = !result;
}
return strings;
}
private String getString(Boolean result, int i) {
return String.valueOf(result) + i + String.valueOf(!result);
}
}
是的,我知道,这是一个古老的问题,但我会投入我的两分钱:
LinkedList在性能方面几乎总是错误的选择。有一些非常具体的算法需要LinkedList,但这些算法非常非常罕见,并且该算法通常具体取决于LinkedLists在使用ListIterator导航到列表中间后相对快速地插入和删除元素的能力。
有一个常见的用例LinkedList优于ArrayList:队列。但是,如果您的目标是性能,那么您也应该考虑使用ArrayBlockingQueue(如果您可以提前确定队列大小的上限,并且能够提前分配所有内存),而不是LinkedList,或者使用CircularArray实现。(是的,它来自2001年,因此您需要对其进行一般化,但我得到的性能比与最近一篇JVM文章中引用的性能比相当)
TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。
理论上,LinkedList的add(E元素)有一个O(1)
此外,在列表中间添加元素应该非常有效。
实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。
以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):
使用新一代硬件(更大、更高效的缓存),结果更为确凿:
LinkedList需要更多的时间来完成相同的任务。源源代码
这主要有两个原因:
主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。
顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。
需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms
来源:每个程序员都应该知道的延迟数
为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:
注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码
复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效
致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据
除了上面的其他好参数之外,您应该注意到ArrayList实现了RandomAccess接口,而LinkedList实现了Queue。
因此,他们解决的问题略有不同,效率和行为有所不同(见他们的方法列表)。