我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

如果你想要一个软件实现,而不是硬件实现,可以在《数值公式》的第5章中找到这个问题的明确答案。我的副本在一个盒子里,所以我不能给出细节,但简短的版本(如果我没记错的话)是你把tan(theta/2)作为你的基本操作,然后从那里计算其他的。计算是用级数近似完成的,但它比泰勒级数收敛得快得多。

抱歉,我没拿到书就想不起来了。

其他回答

对于罪恶,用泰勒展开可以得到

Sin (x) = x - x^3/3!+ x ^ 5/5 !- x ^ 7/7 !+……(1)

您将继续添加项,直到它们之间的差异低于可接受的容忍水平,或者只是有限的步数(更快,但不太精确)。举个例子:

float sin(float x)
{
  float res=0, pow=x, fact=1;
  for(int i=0; i<5; ++i)
  {
    res+=pow/fact;
    pow*=-1*x*x;
    fact*=(2*(i+1))*(2*(i+1)+1);
  }

  return res;
}

注:(1)适用于小角度的近似值sin(x)=x。对于更大的角度,你需要计算越来越多的项才能得到可接受的结果。 你可以使用while参数并继续,以达到一定的准确性:

double sin (double x){
    int i = 1;
    double cur = x;
    double acc = 1;
    double fact= 1;
    double pow = x;
    while (fabs(acc) > .00000001 &&   i < 100){
        fact *= ((2*i)*(2*i+1));
        pow *= -1 * x*x; 
        acc =  pow / fact;
        cur += acc;
        i++;
    }
    return cur;

}

正如许多人指出的那样,它依赖于实现。但就我对你的问题的理解而言,你对数学函数的真正软件实现感兴趣,但只是没有找到一个。如果是这样的话,那么你是这样的:

从http://ftp.gnu.org/gnu/glibc/下载glibc源代码 查看位于解包的glibc根\sysdeps\ieee754\dbl-64文件夹中的文件dosincosc 类似地,您可以找到其余数学库的实现,只需查找具有适当名称的文件

您也可以看看扩展名为.tbl的文件,它们的内容只不过是以二进制形式的不同函数的预计算值的巨大表格。这就是为什么实现如此之快:而不是计算他们使用的任何级数的所有系数,他们只是做一个快速查找,这要快得多。顺便说一下,他们确实用裁缝级数来计算正弦和余弦。

我希望这能有所帮助。

无论何时这样一个函数被求值,那么在某种程度上很可能有:

内插的值表(用于快速,不准确的应用程序-例如计算机图形) 收敛于期望值的级数的计算——可能不是泰勒级数,更可能是基于像克伦肖-柯蒂斯这样的奇异正交。

如果没有硬件支持,那么编译器可能会使用后一种方法,只发出汇编代码(没有调试符号),而不是使用c库——这让您在调试器中跟踪实际代码变得很棘手。

计算正弦/余弦/正切其实很容易通过代码使用泰勒级数来实现。自己写一个只需5秒钟。

整个过程可以用这个方程来概括:

下面是我为C语言写的一些例程:

double _pow(double a, double b) {
    double c = 1;
    for (int i=0; i<b; i++)
        c *= a;
    return c;
}

double _fact(double x) {
    double ret = 1;
    for (int i=1; i<=x; i++) 
        ret *= i;
    return ret;
}

double _sin(double x) {
    double y = x;
    double s = -1;
    for (int i=3; i<=100; i+=2) {
        y+=s*(_pow(x,i)/_fact(i));
        s *= -1;
    }  
    return y;
}
double _cos(double x) {
    double y = 1;
    double s = -1;
    for (int i=2; i<=100; i+=2) {
        y+=s*(_pow(x,i)/_fact(i));
        s *= -1;
    }  
    return y;
}
double _tan(double x) {
     return (_sin(x)/_cos(x));  
}

如果你想犯罪

 __asm__ __volatile__("fsin" : "=t"(vsin) : "0"(xrads));

如果你想的话,因为

 __asm__ __volatile__("fcos" : "=t"(vcos) : "0"(xrads));

如果你想要根号方根

 __asm__ __volatile__("fsqrt" : "=t"(vsqrt) : "0"(value));

那么,既然机器指令可以做到,为什么还要使用不准确的代码呢?