用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
我注意到gnu-GMP的标准指数平方算法有些奇怪:
我实现了两个几乎相同的函数——一个是幂模函数,使用最普通的二进制指数平方算法,
标签______2 ()
然后另一个基本相同的概念,但重新映射为每轮除以10,而不是除以2,
标签______10 ()
.
( time ( jot - 1456 9999999999 6671 | pvE0 |
gawk -Mbe '
function ______10(_, __, ___, ____, _____, _______) {
__ = +__
____ = (____+=_____=____^= \
(_ %=___=+___)<_)+____++^____—
while (__) {
if (_______= __%____) {
if (__==_______) {
return (_^__ *_____) %___
}
__-=_______
_____ = (_^_______*_____) %___
}
__/=____
_ = _^____%___
}
}
function ______2(_, __, ___, ____, _____) {
__=+__
____+=____=_____^=(_%=___=+___)<_
while (__) {
if (__ %____) {
if (__<____) {
return (_*_____) %___
}
_____ = (_____*_) %___
--__
}
__/=____
_= (_*_) %___
}
}
BEGIN {
OFMT = CONVFMT = "%.250g"
__ = (___=_^= FS=OFS= "=")(_<_)
_____ = __^(_=3)^--_ * ++_-(_+_)^_
______ = _^(_+_)-_ + _^!_
_______ = int(______*_____)
________ = 10 ^ 5 + 1
_________ = 8 ^ 4 * 2 - 1
}
GNU Awk 5.1.1, API: 3.1 (GNU MPFR 4.1.0, GNU MP 6.2.1)
.
($ + + NF = ______10(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“
out9: 48.4MiB 0:00:08 [6.02MiB/s] [6.02MiB/s] [ <=> ]
in0: 15.6MiB 0:00:08 [1.95MiB/s] [1.95MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )
8.31s user 0.06s system 103% cpu 8.058 total
ffa16aa937b7beca66a173ccbf8e1e12 stdin
($ + + NF = ______ 2(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“
out9: 48.4MiB 0:00:12 [3.78MiB/s] [3.78MiB/s] [<=> ]
in0: 15.6MiB 0:00:12 [1.22MiB/s] [1.22MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )
13.05s user 0.07s system 102% cpu 12.821 total
ffa16aa937b7beca66a173ccbf8e1e12 stdin
由于一些非常违反直觉和我不知道的原因,对于我投入的各种各样的输入,div-10变体几乎总是更快。这是两个哈希值之间的匹配,这让它真正令人困惑,尽管计算机显然没有内置在10进制的范例中。
我是否在代码/方法中遗漏了一些关键或明显的东西,可能会以令人困惑的方式歪曲结果?谢谢。
其他回答
迟到的人:
下面是一个尽可能处理y < 0的解。
It uses a result of intmax_t for maximum range. There is no provision for answers that do not fit in intmax_t. powjii(0, 0) --> 1 which is a common result for this case. pow(0,negative), another undefined result, returns INTMAX_MAX intmax_t powjii(int x, int y) { if (y < 0) { switch (x) { case 0: return INTMAX_MAX; case 1: return 1; case -1: return y % 2 ? -1 : 1; } return 0; } intmax_t z = 1; intmax_t base = x; for (;;) { if (y % 2) { z *= base; } y /= 2; if (y == 0) { break; } base *= base; } return z; }
这段代码使用了一个永久循环for(;;),以避免在其他循环解决方案中常见的最终基数*=基数。这个乘法是1)不需要的,2)可能是int*int溢出,也就是UB。
下面是Java中的方法
private int ipow(int base, int exp)
{
int result = 1;
while (exp != 0)
{
if ((exp & 1) == 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
我用递归,如果exp是偶数,5^10 =25^5。
int pow(float base,float exp){
if (exp==0)return 1;
else if(exp>0&&exp%2==0){
return pow(base*base,exp/2);
}else if (exp>0&&exp%2!=0){
return base*pow(base,exp-1);
}
}
除了Elias的答案,当使用有符号整数实现时,会导致未定义行为,当使用无符号整数实现时,会导致高输入的不正确值,
下面是平方求幂的修改版本,它也适用于有符号整数类型,并且不会给出错误的值:
#include <stdint.h>
#define SQRT_INT64_MAX (INT64_C(0xB504F333))
int64_t alx_pow_s64 (int64_t base, uint8_t exp)
{
int_fast64_t base_;
int_fast64_t result;
base_ = base;
if (base_ == 1)
return 1;
if (!exp)
return 1;
if (!base_)
return 0;
result = 1;
if (exp & 1)
result *= base_;
exp >>= 1;
while (exp) {
if (base_ > SQRT_INT64_MAX)
return 0;
base_ *= base_;
if (exp & 1)
result *= base_;
exp >>= 1;
}
return result;
}
使用该函数的注意事项:
(1 ** N) == 1
(N ** 0) == 1
(0 ** 0) == 1
(0 ** N) == 0
如果将发生任何溢出或换行,则返回0;
I used int64_t, but any width (signed or unsigned) can be used with little modification. However, if you need to use a non-fixed-width integer type, you will need to change SQRT_INT64_MAX by (int)sqrt(INT_MAX) (in the case of using int) or something similar, which should be optimized, but it is uglier, and not a C constant expression. Also casting the result of sqrt() to an int is not very good because of floating point precission in case of a perfect square, but as I don't know of any implementation where INT_MAX -or the maximum of any type- is a perfect square, you can live with that.
如果你想得到一个整数的2的幂,最好使用shift选项:
Pow(2,5)可以替换为1<<5
这样效率更高。