如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
当前回答
试试看:
def x1():
global x
x += 1
print('x1: ', x)
def x2():
global x
x = x+1
print('x2: ', x)
x = 5
print('x: ', x)
x1()
x2()
# Output:
# x: 5
# x1: 6
# x2: 7
其他回答
global_var = 10 # will be considered as a global variable
def func_1():
global global_var # access variable using variable keyword
global_var += 1
def func_2():
global global_var
global_var *= 2
print(f"func_2: {global_var}")
func_1()
func_2()
print("Global scope:", global_var) # will print 22
说明:
globalvar是一个全局变量,所有函数和类都可以访问该变量。
func_1()使用关键字global访问该全局变量,该关键字指向写入全局范围的变量。如果我没有写全局关键字,func_1内的变量global_var被认为是一个局部变量,只能在函数内使用。然后在func_1内,我将全局变量递增1。
在func_2()中也发生了同样的情况。
调用func_1和func_2后,您将看到global_var已更改
全局变量很好-除了多处理
与不同平台/环境上的多处理相关的全局变量因为一边是Windows/Mac OS,另一边是Linux,这很麻烦。
我将用一个简单的例子向你展示这一点,指出我前段时间遇到的一个问题。
如果你想了解为什么Windows/MacOs和Linux上的情况不同需要知道的是,启动新进程的默认机制。。。
Windows/MacOs是“种子”Linux是“fork”
它们在内存分配和初始化方面有所不同。。。(但我不想谈这个此处)。
让我们看看这个问题/例子。。。
import multiprocessing
counter = 0
def do(task_id):
global counter
counter +=1
print(f'task {task_id}: counter = {counter}')
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=4)
task_ids = list(range(4))
pool.map(do, task_ids)
窗户
如果你在Windows上运行这个(我想也是在MacOS上),你会得到以下输出。。。
task 0: counter = 1
task 1: counter = 2
task 2: counter = 3
task 3: counter = 4
Linux系统
如果您在Linux上运行此程序,则会得到以下结果。
task 0: counter = 1
task 1: counter = 1
task 2: counter = 1
task 3: counter = 1
除了已经存在的答案之外,为了使这一问题更加令人困惑:
在Python中,仅在函数内部引用的变量是隐式全局。如果在任何地方为变量分配了新值在函数体中,假设它是局部的。如果变量如果在函数中分配了一个新值,则变量为隐式本地,您需要将其显式声明为“全局”。虽然一开始有点令人惊讶,但片刻的思考解释了这一方面,要求全局分配变量提供了防止意外的副作用。另一方面,如果全球对于所有全局引用都是必需的时间您必须将对内置函数或导入模块的组件。这种混乱会破坏全球宣言对识别副作用。
来源:Python中局部和全局变量的规则是什么?。
如果您有一个同名的局部变量,您可能需要使用globals()函数。
globals()['your_global_var'] = 42
对于并行执行,如果您不了解正在发生的情况,全局变量可能会导致意外的结果。下面是在多处理中使用全局变量的示例。我们可以清楚地看到,每个过程都使用自己的变量副本:
import multiprocessing
import os
import random
import sys
import time
def worker(new_value):
old_value = get_value()
set_value(random.randint(1, 99))
print('pid=[{pid}] '
'old_value=[{old_value:2}] '
'new_value=[{new_value:2}] '
'get_value=[{get_value:2}]'.format(
pid=str(os.getpid()),
old_value=old_value,
new_value=new_value,
get_value=get_value()))
def get_value():
global global_variable
return global_variable
def set_value(new_value):
global global_variable
global_variable = new_value
global_variable = -1
print('before set_value(), get_value() = [%s]' % get_value())
set_value(new_value=-2)
print('after set_value(), get_value() = [%s]' % get_value())
processPool = multiprocessing.Pool(processes=5)
processPool.map(func=worker, iterable=range(15))
输出:
before set_value(), get_value() = [-1]
after set_value(), get_value() = [-2]
pid=[53970] old_value=[-2] new_value=[ 0] get_value=[23]
pid=[53971] old_value=[-2] new_value=[ 1] get_value=[42]
pid=[53970] old_value=[23] new_value=[ 4] get_value=[50]
pid=[53970] old_value=[50] new_value=[ 6] get_value=[14]
pid=[53971] old_value=[42] new_value=[ 5] get_value=[31]
pid=[53972] old_value=[-2] new_value=[ 2] get_value=[44]
pid=[53973] old_value=[-2] new_value=[ 3] get_value=[94]
pid=[53970] old_value=[14] new_value=[ 7] get_value=[21]
pid=[53971] old_value=[31] new_value=[ 8] get_value=[34]
pid=[53972] old_value=[44] new_value=[ 9] get_value=[59]
pid=[53973] old_value=[94] new_value=[10] get_value=[87]
pid=[53970] old_value=[21] new_value=[11] get_value=[21]
pid=[53971] old_value=[34] new_value=[12] get_value=[82]
pid=[53972] old_value=[59] new_value=[13] get_value=[ 4]
pid=[53973] old_value=[87] new_value=[14] get_value=[70]