如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
当前回答
全局变量很好-除了多处理
与不同平台/环境上的多处理相关的全局变量因为一边是Windows/Mac OS,另一边是Linux,这很麻烦。
我将用一个简单的例子向你展示这一点,指出我前段时间遇到的一个问题。
如果你想了解为什么Windows/MacOs和Linux上的情况不同需要知道的是,启动新进程的默认机制。。。
Windows/MacOs是“种子”Linux是“fork”
它们在内存分配和初始化方面有所不同。。。(但我不想谈这个此处)。
让我们看看这个问题/例子。。。
import multiprocessing
counter = 0
def do(task_id):
global counter
counter +=1
print(f'task {task_id}: counter = {counter}')
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=4)
task_ids = list(range(4))
pool.map(do, task_ids)
窗户
如果你在Windows上运行这个(我想也是在MacOS上),你会得到以下输出。。。
task 0: counter = 1
task 1: counter = 2
task 2: counter = 3
task 3: counter = 4
Linux系统
如果您在Linux上运行此程序,则会得到以下结果。
task 0: counter = 1
task 1: counter = 1
task 2: counter = 1
task 3: counter = 1
其他回答
写入全局数组的显式元素显然不需要全局声明,尽管“批发”写入它确实有这样的要求:
import numpy as np
hostValue = 3.14159
hostArray = np.array([2., 3.])
hostMatrix = np.array([[1.0, 0.0],[ 0.0, 1.0]])
def func1():
global hostValue # mandatory, else local.
hostValue = 2.0
def func2():
global hostValue # mandatory, else UnboundLocalError.
hostValue += 1.0
def func3():
global hostArray # mandatory, else local.
hostArray = np.array([14., 15.])
def func4(): # no need for globals
hostArray[0] = 123.4
def func5(): # no need for globals
hostArray[1] += 1.0
def func6(): # no need for globals
hostMatrix[1][1] = 12.
def func7(): # no need for globals
hostMatrix[0][0] += 0.33
func1()
print "After func1(), hostValue = ", hostValue
func2()
print "After func2(), hostValue = ", hostValue
func3()
print "After func3(), hostArray = ", hostArray
func4()
print "After func4(), hostArray = ", hostArray
func5()
print "After func5(), hostArray = ", hostArray
func6()
print "After func6(), hostMatrix = \n", hostMatrix
func7()
print "After func7(), hostMatrix = \n", hostMatrix
试试看:
def x1():
global x
x += 1
print('x1: ', x)
def x2():
global x
x = x+1
print('x2: ', x)
x = 5
print('x: ', x)
x1()
x2()
# Output:
# x: 5
# x1: 6
# x2: 7
作为附加组件,使用一个文件来包含所有本地声明的全局变量,然后导入为:
文件initval.py:
Stocksin = 300
Prices = []
文件getstocks.py:
import initval as iv
def getmystocks():
iv.Stocksin = getstockcount()
def getmycharts():
for ic in range(iv.Stocksin):
实际上,您并没有将全局变量存储在本地变量中,只是创建了对原始全局引用引用的同一对象的本地引用。请记住,Python中的几乎所有内容都是引用对象的名称,在通常的操作中不会复制任何内容。
如果您不必显式指定标识符何时引用预定义的全局变量,那么您可能必须显式指定何时标识符是新的局部变量(例如,使用JavaScript中的“var”命令)。由于在任何严肃和非平凡的系统中,局部变量比全局变量更常见,因此Python的系统在大多数情况下更有意义。
你可能有一种语言试图猜测,如果存在的话使用一个全局变量,如果不存在的话创建一个局部变量。然而,这很容易出错。例如,导入另一个模块可能会无意中引入一个同名的全局变量,从而改变程序的行为。
引用要显示更改的类命名空间。
在本例中,runner使用文件config中的max。我希望我的测试在跑步者使用时更改max的值。
main/config.py
max = 15000
主/运行程序.py
from main import config
def check_threads():
return max < thread_count
测试/runner_test.py
from main import runner # <----- 1. add file
from main.runner import check_threads
class RunnerTest(unittest):
def test_threads(self):
runner.max = 0 # <----- 2. set global
check_threads()