在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
当前回答
如果你能使用熊猫,那么value_counts就在那里救援。
>>> import pandas as pd
>>> a = [1, 2, 3, 4, 1, 4, 1]
>>> pd.Series(a).value_counts()
1 3
4 2
3 1
2 1
dtype: int64
它还会根据频率自动对结果进行排序。
如果希望结果在列表中,请执行以下操作
>>> pd.Series(a).value_counts().reset_index().values.tolist()
[[1, 3], [4, 2], [3, 1], [2, 1]]
其他回答
以下是三种解决方案:
Fastest是使用for循环并将其存储在Dict中。
import time
from collections import Counter
def countElement(a):
g = {}
for i in a:
if i in g:
g[i] +=1
else:
g[i] =1
return g
z = [1,1,1,1,2,2,2,2,3,3,4,5,5,234,23,3,12,3,123,12,31,23,13,2,4,23,42,42,34,234,23,42,34,23,423,42,34,23,423,4,234,23,42,34,23,4,23,423,4,23,4]
#Solution 1 - Faster
st = time.monotonic()
for i in range(1000000):
b = countElement(z)
et = time.monotonic()
print(b)
print('Simple for loop and storing it in dict - Duration: {}'.format(et - st))
#Solution 2 - Fast
st = time.monotonic()
for i in range(1000000):
a = Counter(z)
et = time.monotonic()
print (a)
print('Using collections.Counter - Duration: {}'.format(et - st))
#Solution 3 - Slow
st = time.monotonic()
for i in range(1000000):
g = dict([(i, z.count(i)) for i in set(z)])
et = time.monotonic()
print(g)
print('Using list comprehension - Duration: {}'.format(et - st))
后果
#解决方案1-更快
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 234: 3, 23: 10, 12: 2, 123: 1, 31: 1, 13: 1, 42: 5, 34: 4, 423: 3}
Simple for loop and storing it in dict - Duration: 12.032000000000153
#解决方案2-快速
Counter({23: 10, 4: 6, 2: 5, 42: 5, 1: 4, 3: 4, 34: 4, 234: 3, 423: 3, 5: 2, 12: 2, 123: 1, 31: 1, 13: 1})
Using collections.Counter - Duration: 15.889999999999418
#解决方案3-缓慢
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 34: 4, 423: 3, 234: 3, 42: 5, 12: 2, 13: 1, 23: 10, 123: 1, 31: 1}
Using list comprehension - Duration: 33.0
# Python >= 2.6 (defaultdict) && < 2.7 (Counter, OrderedDict)
from collections import defaultdict
def count_unsorted_list_items(items):
"""
:param items: iterable of hashable items to count
:type items: iterable
:returns: dict of counts like Py2.7 Counter
:rtype: dict
"""
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
# Python >= 2.2 (generators)
def count_sorted_list_items(items):
"""
:param items: sorted iterable of items to count
:type items: sorted iterable
:returns: generator of (item, count) tuples
:rtype: generator
"""
if not items:
return
elif len(items) == 1:
yield (items[0], 1)
return
prev_item = items[0]
count = 1
for item in items[1:]:
if prev_item == item:
count += 1
else:
yield (prev_item, count)
count = 1
prev_item = item
yield (item, count)
return
import unittest
class TestListCounters(unittest.TestCase):
def test_count_unsorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = count_unsorted_list_items(inp)
print inp, exp_outp, counts
self.assertEqual(counts, dict( exp_outp ))
inp, exp_outp = UNSORTED_WIN = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(dict( exp_outp ), count_unsorted_list_items(inp) )
def test_count_sorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = list( count_sorted_list_items(inp) )
print inp, exp_outp, counts
self.assertEqual(counts, exp_outp)
inp, exp_outp = UNSORTED_FAIL = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(exp_outp, list( count_sorted_list_items(inp) ))
# ... [(2,2), (4,1), (2,1)]
或者,您也可以自己实现计数器。我是这样做的:
item_list = ['me', 'me', 'you', 'you', 'you', 'they']
occ_dict = {}
for item in item_list:
if item not in occ_dict:
occ_dict[item] = 1
else:
occ_dict[item] +=1
print(occ_dict)
输出:{“我”:2,“你”:3,“他们”:1}
我已经将所有建议的解决方案(以及一些新的解决方案)与perfplot(我的一个小项目)进行了比较。
清点一项
对于足够大的阵列,事实证明
numpy.sum(numpy.array(a) == 1)
比其他解决方案稍快。
清点所有项目
如前所述,
numpy.bincount(a)
是你想要的。
再现绘图的代码:
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
perfplot.show(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2**k for k in range(20)],
kernels=[
counter, count, bincount, pandas_value_counts, occur_dict,
count_unsorted_list_items, operator_countof
],
equality_check=None,
logx=True,
logy=True,
)
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i] + 1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
b = perfplot.bench(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2 ** k for k in range(20)],
kernels=[
counter,
count,
bincount,
pandas_value_counts,
occur_dict,
count_unsorted_list_items,
operator_countof,
],
equality_check=None,
)
b.save("out.png")
b.show()
def countfrequncyinarray(arr1):
r=len(arr1)
return {i:arr1.count(i) for i in range(1,r+1)}
arr1=[4,4,4,4]
a=countfrequncyinarray(arr1)
print(a)