在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
当前回答
给定一个项目,我如何在Python的列表中计算它的出现次数?
下面是一个示例列表:
>>> l = list('aaaaabbbbcccdde')
>>> l
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'e']
列表计数
有list.count方法
>>> l.count('b')
4
这适用于任何列表。元组也有这种方法:
>>> t = tuple('aabbbffffff')
>>> t
('a', 'a', 'b', 'b', 'b', 'f', 'f', 'f', 'f', 'f', 'f')
>>> t.count('f')
6
集合。计数器
然后是collections.Counter。您可以将任何可迭代项转储到Counter中,而不仅仅是列表,Counter将保留元素计数的数据结构。
用法:
>>> from collections import Counter
>>> c = Counter(l)
>>> c['b']
4
计数器基于Python字典,它们的键是元素,因此键需要是可散列的。它们基本上类似于允许冗余元素进入其中的集合。
进一步使用集合。计数器
您可以从计数器中添加或减去可迭代项:
>>> c.update(list('bbb'))
>>> c['b']
7
>>> c.subtract(list('bbb'))
>>> c['b']
4
您还可以使用计数器执行多组操作:
>>> c2 = Counter(list('aabbxyz'))
>>> c - c2 # set difference
Counter({'a': 3, 'c': 3, 'b': 2, 'd': 2, 'e': 1})
>>> c + c2 # addition of all elements
Counter({'a': 7, 'b': 6, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c | c2 # set union
Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c & c2 # set intersection
Counter({'a': 2, 'b': 2})
愚蠢的回答,求和
有很好的内置答案,但这个例子有点指导意义。在这里,我们对字符c等于“b”的所有情况求和:
>>> sum(c == 'b' for c in l)
4
对于这个用例来说不是很好,但是如果你需要有一个可迭代的计数,其中case为True,那么对布尔结果求和是非常好的,因为True等于1。
为什么不是熊猫?
另一个答案是:
为什么不使用熊猫?
Pandas是一个通用库,但它不在标准库中。将其添加为需求是非常重要的。
列表对象本身以及标准库中都有针对该用例的内置解决方案。
如果您的项目还不需要panda,那么仅将其作为此功能的需求将是愚蠢的。
其他回答
以下是三种解决方案:
Fastest是使用for循环并将其存储在Dict中。
import time
from collections import Counter
def countElement(a):
g = {}
for i in a:
if i in g:
g[i] +=1
else:
g[i] =1
return g
z = [1,1,1,1,2,2,2,2,3,3,4,5,5,234,23,3,12,3,123,12,31,23,13,2,4,23,42,42,34,234,23,42,34,23,423,42,34,23,423,4,234,23,42,34,23,4,23,423,4,23,4]
#Solution 1 - Faster
st = time.monotonic()
for i in range(1000000):
b = countElement(z)
et = time.monotonic()
print(b)
print('Simple for loop and storing it in dict - Duration: {}'.format(et - st))
#Solution 2 - Fast
st = time.monotonic()
for i in range(1000000):
a = Counter(z)
et = time.monotonic()
print (a)
print('Using collections.Counter - Duration: {}'.format(et - st))
#Solution 3 - Slow
st = time.monotonic()
for i in range(1000000):
g = dict([(i, z.count(i)) for i in set(z)])
et = time.monotonic()
print(g)
print('Using list comprehension - Duration: {}'.format(et - st))
后果
#解决方案1-更快
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 234: 3, 23: 10, 12: 2, 123: 1, 31: 1, 13: 1, 42: 5, 34: 4, 423: 3}
Simple for loop and storing it in dict - Duration: 12.032000000000153
#解决方案2-快速
Counter({23: 10, 4: 6, 2: 5, 42: 5, 1: 4, 3: 4, 34: 4, 234: 3, 423: 3, 5: 2, 12: 2, 123: 1, 31: 1, 13: 1})
Using collections.Counter - Duration: 15.889999999999418
#解决方案3-缓慢
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 34: 4, 423: 3, 234: 3, 42: 5, 12: 2, 13: 1, 23: 10, 123: 1, 31: 1}
Using list comprehension - Duration: 33.0
如果您使用的是Python 2.7或3.x,并且希望每个元素的出现次数,请使用Counter:
>>> from collections import Counter
>>> z = ['blue', 'red', 'blue', 'yellow', 'blue', 'red']
>>> Counter(z)
Counter({'blue': 3, 'red': 2, 'yellow': 1})
我会使用filter(),以Lukasz为例:
>>> lst = [1, 2, 3, 4, 1, 4, 1]
>>> len(filter(lambda x: x==1, lst))
3
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
#turning the list into a temporary dataframe
test = pd.DataFrame(test)
#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts
然后可以使用dfcounts.index和dfcounts.value来获取数据。
list.count(x)返回x在列表中出现的次数
参见:http://docs.python.org/tutorial/datastructures.html#more-在列表上