我在这里找到了一个纯Python 2素数生成器,在Willy Good的评论中,它比rwh2_primes快。
def primes235(limit):
yield 2; yield 3; yield 5
if limit < 7: return
modPrms = [7,11,13,17,19,23,29,31]
gaps = [4,2,4,2,4,6,2,6,4,2,4,2,4,6,2,6] # 2 loops for overflow
ndxs = [0,0,0,0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,6,6,7,7,7,7,7,7]
lmtbf = (limit + 23) // 30 * 8 - 1 # integral number of wheels rounded up
lmtsqrt = (int(limit ** 0.5) - 7)
lmtsqrt = lmtsqrt // 30 * 8 + ndxs[lmtsqrt % 30] # round down on the wheel
buf = [True] * (lmtbf + 1)
for i in xrange(lmtsqrt + 1):
if buf[i]:
ci = i & 7; p = 30 * (i >> 3) + modPrms[ci]
s = p * p - 7; p8 = p << 3
for j in range(8):
c = s // 30 * 8 + ndxs[s % 30]
buf[c::p8] = [False] * ((lmtbf - c) // p8 + 1)
s += p * gaps[ci]; ci += 1
for i in xrange(lmtbf - 6 + (ndxs[(limit - 7) % 30])): # adjust for extras
if buf[i]: yield (30 * (i >> 3) + modPrms[i & 7])
我的结果:
$ time ./prime_rwh2.py 1e8
5761455 primes found < 1e8
real 0m3.201s
user 0m2.609s
sys 0m0.578s
$ time ./prime_wheel.py 1e8
5761455 primes found < 1e8
real 0m2.710s
user 0m2.469s
sys 0m0.219s
...在我最近的中档笔记本电脑(i5 8265U 1.6GHz)上运行Ubuntu Win 10。
这是一个mod 30轮筛,跳过倍数2,3和5。对我来说,它在2.5e9左右的时候工作得很好,那时我的笔记本电脑开始用完8G内存,需要大量交换。
我喜欢对30取余,因为它只有8个余数不是2 3 5的倍数。这允许使用移位和“&”进行乘法,除法和mod,并应该允许将一个mod 30轮的结果打包到一个字节中。我把威利的代码变成了一个分段的mod 30轮筛,以消除大N的抖动,并张贴在这里。
还有一个更快的Javascript版本,它是分段的,并使用了一个mod 210轮(没有2,3,5或7的倍数)@GordonBGood与一个深入的解释,这对我很有用。