这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

对于足够大的N,真正最快的解决方案是下载一个预先计算的质数列表,将其存储为元组,并执行如下操作:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

如果只有N >个质数[-1],则计算更多的质数并将新列表保存在代码中,以便下次同样快。

要跳出思维定势。

其他回答

对于足够大的N,真正最快的解决方案是下载一个预先计算的质数列表,将其存储为元组,并执行如下操作:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

如果只有N >个质数[-1],则计算更多的质数并将新列表保存在代码中,以便下次同样快。

要跳出思维定势。

在写这篇文章的时候,这是最快的工作解决方案(至少在我的机器上是这样)。它同时使用numpy和bitarray,并受到这个答案的primesfrom2to的启发。

import numpy as np
from bitarray import bitarray


def bit_primes(n):
    bit_sieve = bitarray(n // 3 + (n % 6 == 2))
    bit_sieve.setall(1)
    bit_sieve[0] = False

    for i in range(int(n ** 0.5) // 3 + 1):
        if bit_sieve[i]:
            k = 3 * i + 1 | 1
            bit_sieve[k * k // 3::2 * k] = False
            bit_sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False

    np_sieve = np.unpackbits(np.frombuffer(bit_sieve.tobytes(), dtype=np.uint8)).view(bool)
    return np.concatenate(((2, 3), ((3 * np.flatnonzero(np_sieve) + 1) | 1)))

下面是与素数from2to的比较,它之前被发现是unutbu比较中最快的解:

python3 -m timeit -s "import fast_primes" "fast_primes.bit_primes(1000000)"
200 loops, best of 5: 1.19 msec per loop

python3 -m timeit -s "import fast_primes" "fast_primes.primesfrom2to(1000000)"
200 loops, best of 5: 1.23 msec per loop

对于寻找100万以下的质数,bit_primes稍微快一些。 n值越大,差异就越大。在某些情况下,bit_primes的速度是原来的两倍多:

python3 -m timeit -s "import fast_primes" "fast_primes.bit_primes(500_000_000)"
1 loop, best of 5: 540 msec per loop

python3 -m timeit -s "import fast_primes" "fast_primes.primesfrom2to(500_000_000)"
1 loop, best of 5: 1.15 sec per loop

作为参考,以下是primesfrom2to I的最小修改版本(适用于Python 3):

def primesfrom2to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a array of primes, 2 <= p < n"""
    sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = False
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0] + 1) | 1)]

我在这里找到了一个纯Python 2素数生成器,在Willy Good的评论中,它比rwh2_primes快。

def primes235(limit):
yield 2; yield 3; yield 5
if limit < 7: return
modPrms = [7,11,13,17,19,23,29,31]
gaps = [4,2,4,2,4,6,2,6,4,2,4,2,4,6,2,6] # 2 loops for overflow
ndxs = [0,0,0,0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,6,6,7,7,7,7,7,7]
lmtbf = (limit + 23) // 30 * 8 - 1 # integral number of wheels rounded up
lmtsqrt = (int(limit ** 0.5) - 7)
lmtsqrt = lmtsqrt // 30 * 8 + ndxs[lmtsqrt % 30] # round down on the wheel
buf = [True] * (lmtbf + 1)
for i in xrange(lmtsqrt + 1):
    if buf[i]:
        ci = i & 7; p = 30 * (i >> 3) + modPrms[ci]
        s = p * p - 7; p8 = p << 3
        for j in range(8):
            c = s // 30 * 8 + ndxs[s % 30]
            buf[c::p8] = [False] * ((lmtbf - c) // p8 + 1)
            s += p * gaps[ci]; ci += 1
for i in xrange(lmtbf - 6 + (ndxs[(limit - 7) % 30])): # adjust for extras
    if buf[i]: yield (30 * (i >> 3) + modPrms[i & 7])

我的结果:

$ time ./prime_rwh2.py 1e8
5761455 primes found < 1e8

real    0m3.201s
user    0m2.609s
sys     0m0.578s
$ time ./prime_wheel.py 1e8
5761455 primes found < 1e8

real    0m2.710s
user    0m2.469s
sys     0m0.219s

...在我最近的中档笔记本电脑(i5 8265U 1.6GHz)上运行Ubuntu Win 10。

这是一个mod 30轮筛,跳过倍数2,3和5。对我来说,它在2.5e9左右的时候工作得很好,那时我的笔记本电脑开始用完8G内存,需要大量交换。

我喜欢对30取余,因为它只有8个余数不是2 3 5的倍数。这允许使用移位和“&”进行乘法,除法和mod,并应该允许将一个mod 30轮的结果打包到一个字节中。我把威利的代码变成了一个分段的mod 30轮筛,以消除大N的抖动,并张贴在这里。

还有一个更快的Javascript版本,它是分段的,并使用了一个mod 210轮(没有2,3,5或7的倍数)@GordonBGood与一个深入的解释,这对我很有用。

这是问题解的一种变化应该比问题本身更快。它使用埃拉托色尼的静态筛,没有其他优化。

from typing import List

def list_primes(limit: int) -> List[int]:
    primes = set(range(2, limit + 1))
    for i in range(2, limit + 1):
        if i in primes:
            primes.difference_update(set(list(range(i, limit + 1, i))[1:]))
    return sorted(primes)

>>> list_primes(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。

但我可以用几个技巧将质数从2加速到接近x2:

使用numexpr库将numpy表达式转换为分配较少的紧循环 取代np。有更快的选择 以某种方式操作筛选的前9个元素,因此不需要改变数组的形状

总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒

import numexpr as ne
import numpy as np

def primesfrom2to_numexpr(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
    sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
    ne.evaluate('sieve + 0x01010101', out=sieve)
    sieve = sieve.view('int8')
    #sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
    sieve[0] = 0
    for i in np.arange(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = 0
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
    sieve[[0,8]] = 1
    result = np.flatnonzero(sieve)
    ne.evaluate('result * 3 + 1 + result%2', out=result)
    result[:9] = [2,3,5,7,11,13,17,19,23]
    return result