为什么~2等于-3?~操作符是如何工作的?
当前回答
基本上,动作是一种补充,而不是否定。
这里x= ~x产生的结果总是-(x+1)。
X = ~2
- (2 + 1)
-3
其他回答
Tl;dr ~翻转比特。结果符号就改变了。~2是负数(0b..101)。要输出一个负数红宝石打印-,则2的~2的补:-(~~2 + 1)== -(2 + 1)== 3。正数按原样输出。
有一个内部值,和它的字符串表示。对于正整数,它们基本重合:
irb(main):001:0> '%i' % 2
=> "2"
irb(main):002:0> 2
=> 2
后者相当于:
irb(main):003:0> 2.to_s
"2"
~翻转内部值的位。2 = 0b010。~2是0b..101。两个点(..)代表无限个1。由于结果的最高有效位(MSB)为1,因此结果为负数((~2)。= = true)。要输出一个负数的红宝石印-,则是二的内部补值。2的补位是通过翻转位,然后加1来计算的。0b的2的补。101等于3。是这样的:
irb(main):005:0> '%b' % 2
=> "10"
irb(main):006:0> '%b' % ~2
=> "..101"
irb(main):007:0> ~2
=> -3
总的来说,它翻转了位,从而改变了符号。为了输出一个负数,它输出-,然后~~2 + 1(~~2 == 2)。
ruby像这样输出负数的原因是,它将存储的值视为绝对值的2的补。换句话说,存储的是0b..101。它是一个负数,因此它是x的2的补,为了找到x,它是2的补0b..101。它是2的x的补,也就是x(例如~(~2 + 1)+ 1 == 2)。
如果你将~应用于一个负数,它只是翻转位(尽管如此,这改变了符号):
irb(main):008:0> '%b' % -3
=> "..101"
irb(main):009:0> '%b' % ~-3
=> "10"
irb(main):010:0> ~-3
=> 2
更令人困惑的是~0xffffff00 != 0xff(或MSB等于1的任何其他值)。让我们稍微简化一下:~0xf0 != 0x0f。这是因为它将0xf0视为正数。这是有道理的。因此,~0xf0 == 0x..f0f。结果是一个负数。0x的2的补。F0f是0xf1。所以:
irb(main):011:0> '%x' % ~0xf0
=> "..f0f"
irb(main):012:0> (~0xf0).to_s(16)
=> "-f1"
如果你不打算对结果应用位操作符,你可以考虑~作为-x - 1操作符:
irb(main):018:0> -2 - 1
=> -3
irb(main):019:0> --3 - 1
=> 2
但可以说,这并没有多大用处。
举个例子,假设你有一个8位的网络掩码(为了简单起见),你想计算0的个数。您可以通过翻转位并调用bit_length (0x0f. bit_length)来计算它们。bit_length == 4). But ~0xf0 == 0x..F0f,所以我们要去掉不需要的部分
irb(main):014:0> '%x' % (~0xf0 & 0xff)
=> "f"
irb(main):015:0> (~0xf0 & 0xff).bit_length
=> 4
或者你可以使用XOR运算符(^):
irb(main):016:0> i = 0xf0
irb(main):017:0> '%x' % i ^ ((1 << i.bit_length) - 1)
=> "f"
下面是一种解释:
让我们以~2 = -3为例(为了简单起见,使用8位系统进行解释)
1)我们有2——> 00000010
2)我们可以得到~2—> 11111101 #通过简单地交换位。
[但常见的错误是,有些人试图将~2的二进制值直接转换为十进制(以10为基数)数字,在这种情况下,它是253。这不是我们寻找互补的方式。
3)现在我们找到一个二进制数,将其与二进制值2~相加得到0(00000000)作为结果。 在这种情况下,它是00000011(即3),因为如果我们将00000011加到我们已有的11111101,我们得到100000000,但由于我们使用的是8位系统,1在第9位,它被完全忽略,所以我们最终得到00000000。
4)从点(3)我们可以说~2+3 = 0,因此我们可以说~2 = -3
注意:-3的值是简单的11111101,可以用同样的方式解释。
首先,我们必须把给定的数字分成它的二进制数,然后把它颠倒过来,把最后一个二进制数相加。执行完后,我们必须给我们正在寻找补数的前一位数字赋相反的符号 ~ 2 = 3 解释: 2的二进制形式是00000010变成11111101,这是1的补码,然后补码为00000010+1=00000011,这是3的二进制形式,带-符号,即-3
我知道这个问题的答案很久以前就贴出来了,但我想分享我的答案。
要找到一个数的一补,首先要找到它的二进制等价物。这里,十进制数字2用二进制形式表示为0000 0010。现在通过将其二进制表示的所有数字逆(将所有1都翻转为0,将所有0都翻转为1)来求其1的补数,这将得到:
0000 0010 → 1111 1101
这是十进制数2的1补。由于二进制数的第一个位,即符号位为1,这意味着它存储的数字的符号为负。(这里所指的数字不是2,而是2的1的补数)。
现在,由于数字存储为2的补数(取1的补数加1),所以要将这个二进制数1111 1101显示为十进制,首先我们需要找到它的2的补数,即:
1111 1101 → 0000 0010 + 1 → 0000 0011
这是2的补。二进制数0000 0011的十进制表示是3。并且,因为符号位是1,所以结果是-3。
提示:如果你仔细阅读这个过程,你会发现1的补码操作符的结果实际上是,数字(操作数-,这个操作符被应用)加1,带一个负号。你也可以用其他数字试试。
这个操作是补语,不是否定语。
考虑~0 = -1,然后从这里开始。
否定的算法是,“补,加”。
你知道吗?还有一种“一的补”,它的逆数是对称的,它有一个0和一个-0。