我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

注意:这是python 2.7版本

您可以使用lambda函数来处理这个问题,它既适用于NumPy数组,也适用于列表。

your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]

import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]

你可以用

result[0]

获取筛选元素的第一个索引。

对于python 3.6,使用

list(result)

而不是

result

其他回答

找到了另一个循环解决方案:

new_array_of_indicies = []

for i in range(len(some_array)):
  if some_array[i] == some_value:
    new_array_of_indicies.append(i)
    

您还可以将NumPy数组转换为list in - air并获取其索引。例如,

l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i

它会输出1。

8种方法的比较

TL; diana:

(注:适用于100M元素以下的1d数组)

为了获得最佳性能,请使用index_of__v5 (numba + numpy. 5)。枚举+ for循环;参见下面的代码)。 如果numba不可用: 如果期望在前100k个元素中找到目标值,请使用index_of__v7 (for循环+枚举)。 否则使用index_of__v2/v3/v4 (numpy. exe)。Argmax或numpy。基于flatnonzero)。

由perfplot提供

import numpy as np
from numba import njit

# Based on: numpy.argmax()
# Proposed by: John Haberstroh (https://stackoverflow.com/a/67497472/7204581)
def index_of__v1(arr: np.array, v):
    is_v = (arr == v)
    return is_v.argmax() if is_v.any() else -1


# Based on: numpy.argmax()
def index_of__v2(arr: np.array, v):
    return (arr == v).argmax() if v in arr else -1


# Based on: numpy.flatnonzero()
# Proposed by: 1'' (https://stackoverflow.com/a/42049655/7204581)
def index_of__v3(arr: np.array, v):
    idxs = np.flatnonzero(arr == v)
    return idxs[0] if len(idxs) > 0 else -1


# Based on: numpy.argmax()
def index_of__v4(arr: np.array, v):
    return np.r_[False, (arr == v)].argmax() - 1


# Based on: numba, for loop
# Proposed by: MSeifert (https://stackoverflow.com/a/41578614/7204581)
@njit
def index_of__v5(arr: np.array, v):
    for idx, val in np.ndenumerate(arr):
        if val == v:
            return idx[0]
    return -1


# Based on: numpy.ndenumerate(), for loop
def index_of__v6(arr: np.array, v):
    return next((idx[0] for idx, val in np.ndenumerate(arr) if val == v), -1)


# Based on: enumerate(), for loop
# Proposed by: Noyer282 (https://stackoverflow.com/a/40426159/7204581)
def index_of__v7(arr: np.array, v):
    return next((idx for idx, val in enumerate(arr) if val == v), -1)


# Based on: list.index()
# Proposed by: Hima (https://stackoverflow.com/a/23994923/7204581)
def index_of__v8(arr: np.array, v):
    l = list(arr)
    try:
        return l.index(v)
    except ValueError:
        return -1

去Colab

另一个之前没有提到的选项是bisect模块,它也适用于列表,但需要一个预先排序的列表/数组:

import bisect
import numpy as np
z = np.array([104,113,120,122,126,138])
bisect.bisect_left(z, 122)

收益率

3

Bisect还会在您要查找的数字在数组中不存在时返回一个结果,以便将该数字插入正确的位置。

如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。

other_array[first_array == item]

任何布尔运算都可以:

a = numpy.arange(100)
other_array[first_array > 50]

非零方法也接受布尔值:

index = numpy.nonzero(first_array == item)[0][0]

两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。