我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

您还可以将NumPy数组转换为list in - air并获取其索引。例如,

l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i

它会输出1。

其他回答

您还可以将NumPy数组转换为list in - air并获取其索引。例如,

l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i

它会输出1。

用ndindex

样本数组

arr = np.array([[1,4],
                 [2,3]])
print(arr)

...[[1,4],
    [2,3]]
 

创建一个空列表来存储索引和元素元组

 index_elements = []
 for i in np.ndindex(arr.shape):
     index_elements.append((arr[i],i))

 

将元组列表转换为字典

 index_elements = dict(index_elements)

键是元素,值是元素 索引——使用键来访问索引

 index_elements[4] 
  
output
  ... (0,1)
  

numpy中内置了一种相当习惯的向量化方法。它使用np.argmax()函数的一个奇怪之处来完成这一点——如果有许多值匹配,它将返回第一个匹配的索引。诀窍在于,对于布尔值,将永远只有两个值:True(1)和False(0)。因此,返回的索引将是第一个True的索引。

对于所提供的简单示例,您可以看到它在以下情况下工作

>>> np.argmax(np.array([1,2,3]) == 2)
1

一个很好的例子是计算桶,例如用于分类。假设你有一个切割点数组,你想要对应数组中每个元素的“桶”。该算法是计算x < cuts处的第一个切割索引(在使用np. infinity填充切割之后)。我可以使用broadcast来广播比较,然后沿着cuts-broadcast轴应用argmax。

>>> cuts = np.array([10, 50, 100])
>>> cuts_pad = np.array([*cuts, np.Infinity])
>>> x   = np.array([7, 11, 80, 443])
>>> bins = np.argmax( x[:, np.newaxis] < cuts_pad[np.newaxis, :], axis = 1)
>>> print(bins)
[0, 1, 2, 3]

正如预期的那样,x中的每个值都属于一个连续的箱子,具有定义良好且易于指定的边界情况行为。

numpy_indexed包(免责声明,我是它的作者)包含一个向量化的等效list。ndarray的索引;那就是:

sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]

import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx)   # [2, -1]

这个解决方案具有向量化的性能,可以推广到ndarray,并且有各种处理缺失值的方法。

找到了另一个循环解决方案:

new_array_of_indicies = []

for i in range(len(some_array)):
  if some_array[i] == some_value:
    new_array_of_indicies.append(i)