我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

您还可以将NumPy数组转换为list in - air并获取其索引。例如,

l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i

它会输出1。

其他回答

如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。

other_array[first_array == item]

任何布尔运算都可以:

a = numpy.arange(100)
other_array[first_array > 50]

非零方法也接受布尔值:

index = numpy.nonzero(first_array == item)[0][0]

两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。

NumPy中有很多操作可以放在一起来完成这个任务。这将返回等于item的元素的下标:

numpy.nonzero(array - item)

然后你可以取列表的第一个元素来得到一个元素。

是的,给定一个数组,数组和一个值,要搜索的项,你可以使用np。的地方:

itemindex = numpy.where(array == item)

结果是一个元组,首先是所有的行索引,然后是所有的列索引。

例如,如果一个数组是二维的,它包含你的项目在两个位置,那么

array[itemindex[0][0]][itemindex[1][0]]

将等于你的项目,因此将是:

array[itemindex[0][1]][itemindex[1][1]]

numpy中内置了一种相当习惯的向量化方法。它使用np.argmax()函数的一个奇怪之处来完成这一点——如果有许多值匹配,它将返回第一个匹配的索引。诀窍在于,对于布尔值,将永远只有两个值:True(1)和False(0)。因此,返回的索引将是第一个True的索引。

对于所提供的简单示例,您可以看到它在以下情况下工作

>>> np.argmax(np.array([1,2,3]) == 2)
1

一个很好的例子是计算桶,例如用于分类。假设你有一个切割点数组,你想要对应数组中每个元素的“桶”。该算法是计算x < cuts处的第一个切割索引(在使用np. infinity填充切割之后)。我可以使用broadcast来广播比较,然后沿着cuts-broadcast轴应用argmax。

>>> cuts = np.array([10, 50, 100])
>>> cuts_pad = np.array([*cuts, np.Infinity])
>>> x   = np.array([7, 11, 80, 443])
>>> bins = np.argmax( x[:, np.newaxis] < cuts_pad[np.newaxis, :], axis = 1)
>>> print(bins)
[0, 1, 2, 3]

正如预期的那样,x中的每个值都属于一个连续的箱子,具有定义良好且易于指定的边界情况行为。

index_lst_form_numpy = pd.DataFrame(df).reset_index()["index"].tolist()