我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
当前回答
对于我的用例,我不能提前对数组排序,因为元素的顺序很重要。这是我的全部numpy实现:
import numpy as np
# The array in question
arr = np.array([1,2,1,2,1,5,5,3,5,9])
# Find all of the present values
vals=np.unique(arr)
# Make all indices up-to and including the desired index positive
cum_sum=np.cumsum(arr==vals.reshape(-1,1),axis=1)
# Add zeros to account for the n-1 shape of diff and the all-positive array of the first index
bl_mask=np.concatenate([np.zeros((cum_sum.shape[0],1)),cum_sum],axis=1)>=1
# The desired indices
idx=np.where(np.diff(bl_mask))[1]
# Show results
print(list(zip(vals,idx)))
>>> [(1, 0), (2, 1), (3, 7), (5, 5), (9, 9)]
我认为它解释了重复值的无序数组。
其他回答
另一个之前没有提到的选项是bisect模块,它也适用于列表,但需要一个预先排序的列表/数组:
import bisect
import numpy as np
z = np.array([104,113,120,122,126,138])
bisect.bisect_left(z, 122)
收益率
3
Bisect还会在您要查找的数字在数组中不存在时返回一个结果,以便将该数字插入正确的位置。
NumPy中有很多操作可以放在一起来完成这个任务。这将返回等于item的元素的下标:
numpy.nonzero(array - item)
然后你可以取列表的第一个元素来得到一个元素。
您还可以将NumPy数组转换为list in - air并获取其索引。例如,
l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i
它会输出1。
numpy中内置了一种相当习惯的向量化方法。它使用np.argmax()函数的一个奇怪之处来完成这一点——如果有许多值匹配,它将返回第一个匹配的索引。诀窍在于,对于布尔值,将永远只有两个值:True(1)和False(0)。因此,返回的索引将是第一个True的索引。
对于所提供的简单示例,您可以看到它在以下情况下工作
>>> np.argmax(np.array([1,2,3]) == 2)
1
一个很好的例子是计算桶,例如用于分类。假设你有一个切割点数组,你想要对应数组中每个元素的“桶”。该算法是计算x < cuts处的第一个切割索引(在使用np. infinity填充切割之后)。我可以使用broadcast来广播比较,然后沿着cuts-broadcast轴应用argmax。
>>> cuts = np.array([10, 50, 100])
>>> cuts_pad = np.array([*cuts, np.Infinity])
>>> x = np.array([7, 11, 80, 443])
>>> bins = np.argmax( x[:, np.newaxis] < cuts_pad[np.newaxis, :], axis = 1)
>>> print(bins)
[0, 1, 2, 3]
正如预期的那样,x中的每个值都属于一个连续的箱子,具有定义良好且易于指定的边界情况行为。
要在任何标准上建立索引,你可以这样做:
In [1]: from numpy import *
In [2]: x = arange(125).reshape((5,5,5))
In [3]: y = indices(x.shape)
In [4]: locs = y[:,x >= 120] # put whatever you want in place of x >= 120
In [5]: pts = hsplit(locs, len(locs[0]))
In [6]: for pt in pts:
.....: print(', '.join(str(p[0]) for p in pt))
4, 4, 0
4, 4, 1
4, 4, 2
4, 4, 3
4, 4, 4
这里有一个快速函数,它可以做list.index()所做的事情,只是如果没有找到它,它不会引发异常。注意——这在大型数组上可能非常慢。如果你想把它作为一个方法,你也可以把它拼凑到数组上。
def ndindex(ndarray, item):
if len(ndarray.shape) == 1:
try:
return [ndarray.tolist().index(item)]
except:
pass
else:
for i, subarray in enumerate(ndarray):
try:
return [i] + ndindex(subarray, item)
except:
pass
In [1]: ndindex(x, 103)
Out[1]: [4, 0, 3]