我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

从np.where()中选择第一个元素的替代方法是使用生成器表达式和enumerate,例如:

>>> import numpy as np
>>> x = np.arange(100)   # x = array([0, 1, 2, 3, ... 99])
>>> next(i for i, x_i in enumerate(x) if x_i == 2)
2

对于二维数组,可以这样做:

>>> x = np.arange(100).reshape(10,10)   # x = array([[0, 1, 2,... 9], [10,..19],])
>>> next((i,j) for i, x_i in enumerate(x) 
...            for j, x_ij in enumerate(x_i) if x_ij == 2)
(0, 2)

这种方法的优点是,它在找到第一个匹配后停止检查数组的元素,而np。Where检查所有元素是否匹配。如果在数组的前面有匹配,生成器表达式会更快。

其他回答

NumPy中有很多操作可以放在一起来完成这个任务。这将返回等于item的元素的下标:

numpy.nonzero(array - item)

然后你可以取列表的第一个元素来得到一个元素。

另一个之前没有提到的选项是bisect模块,它也适用于列表,但需要一个预先排序的列表/数组:

import bisect
import numpy as np
z = np.array([104,113,120,122,126,138])
bisect.bisect_left(z, 122)

收益率

3

Bisect还会在您要查找的数字在数组中不存在时返回一个结果,以便将该数字插入正确的位置。

找到了另一个循环解决方案:

new_array_of_indicies = []

for i in range(len(some_array)):
  if some_array[i] == some_value:
    new_array_of_indicies.append(i)
    

对于1D数组,我推荐np。平坦非零(array == value)[0],它等价于np。非零(array == value)[0][0]和np。其中(array == value)[0][0],但避免了对一个单元素元组开箱的丑陋。

如果你只需要第一次出现一个值的索引,你可以使用nonzero(或where,在这种情况下相当于相同的东西):

>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6

如果需要多个值中的每个值的第一个索引,显然可以重复执行上述操作,但有一个技巧可能更快。下面的代码查找每个子序列的第一个元素的下标:

>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)

注意,它找到了3s的子序列和8s的子序列的开头:

[1, 1, 1, 2, 2, 3, 8, 3, 8, 8]

这和求每个值的第一次出现有点不同。在你的程序中,你可以使用t的排序版本来得到你想要的:

>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)