我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
当前回答
从np.where()中选择第一个元素的替代方法是使用生成器表达式和enumerate,例如:
>>> import numpy as np
>>> x = np.arange(100) # x = array([0, 1, 2, 3, ... 99])
>>> next(i for i, x_i in enumerate(x) if x_i == 2)
2
对于二维数组,可以这样做:
>>> x = np.arange(100).reshape(10,10) # x = array([[0, 1, 2,... 9], [10,..19],])
>>> next((i,j) for i, x_i in enumerate(x)
... for j, x_ij in enumerate(x_i) if x_ij == 2)
(0, 2)
这种方法的优点是,它在找到第一个匹配后停止检查数组的元素,而np。Where检查所有元素是否匹配。如果在数组的前面有匹配,生成器表达式会更快。
其他回答
对于一维排序数组,使用numpy会更简单、更有效。searchsorted,返回一个NumPy整数(位置)。例如,
arr = np.array([1, 1, 1, 2, 3, 3, 4])
i = np.searchsorted(arr, 3)
只要确保数组已经排序
还要检查返回的索引i是否包含被搜索的元素,因为searchsorted的主要目标是找到应该插入元素以保持顺序的索引。
if arr[i] == 3:
print("present")
else:
print("not present")
NumPy中有很多操作可以放在一起来完成这个任务。这将返回等于item的元素的下标:
numpy.nonzero(array - item)
然后你可以取列表的第一个元素来得到一个元素。
要在任何标准上建立索引,你可以这样做:
In [1]: from numpy import *
In [2]: x = arange(125).reshape((5,5,5))
In [3]: y = indices(x.shape)
In [4]: locs = y[:,x >= 120] # put whatever you want in place of x >= 120
In [5]: pts = hsplit(locs, len(locs[0]))
In [6]: for pt in pts:
.....: print(', '.join(str(p[0]) for p in pt))
4, 4, 0
4, 4, 1
4, 4, 2
4, 4, 3
4, 4, 4
这里有一个快速函数,它可以做list.index()所做的事情,只是如果没有找到它,它不会引发异常。注意——这在大型数组上可能非常慢。如果你想把它作为一个方法,你也可以把它拼凑到数组上。
def ndindex(ndarray, item):
if len(ndarray.shape) == 1:
try:
return [ndarray.tolist().index(item)]
except:
pass
else:
for i, subarray in enumerate(ndarray):
try:
return [i] + ndindex(subarray, item)
except:
pass
In [1]: ndindex(x, 103)
Out[1]: [4, 0, 3]
numpy_indexed包(免责声明,我是它的作者)包含一个向量化的等效list。ndarray的索引;那就是:
sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]
import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx) # [2, -1]
这个解决方案具有向量化的性能,可以推广到ndarray,并且有各种处理缺失值的方法。
从np.where()中选择第一个元素的替代方法是使用生成器表达式和enumerate,例如:
>>> import numpy as np
>>> x = np.arange(100) # x = array([0, 1, 2, 3, ... 99])
>>> next(i for i, x_i in enumerate(x) if x_i == 2)
2
对于二维数组,可以这样做:
>>> x = np.arange(100).reshape(10,10) # x = array([[0, 1, 2,... 9], [10,..19],])
>>> next((i,j) for i, x_i in enumerate(x)
... for j, x_ij in enumerate(x_i) if x_ij == 2)
(0, 2)
这种方法的优点是,它在找到第一个匹配后停止检查数组的元素,而np。Where检查所有元素是否匹配。如果在数组的前面有匹配,生成器表达式会更快。