我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
当前回答
L.index (x)返回最小的I,使得I是x在列表中第一次出现的索引。
可以放心地假设,Python中的index()函数的实现使它在找到第一个匹配后停止,这将导致最佳的平均性能。
要在NumPy数组中找到第一个匹配后停止的元素,请使用迭代器(ndenumerate)。
In [67]: l=range(100)
In [68]: l.index(2)
Out[68]: 2
NumPy数组:
In [69]: a = np.arange(100)
In [70]: next((idx for idx, val in np.ndenumerate(a) if val==2))
Out[70]: (2L,)
注意,如果没有找到元素,index()和next方法都会返回一个错误。使用next,可以使用第二个参数在未找到元素时返回一个特殊值,例如:
In [77]: next((idx for idx, val in np.ndenumerate(a) if val==400),None)
NumPy中还有其他函数(argmax, where和nonzero)可用于在数组中查找元素,但它们都有一个缺点,即遍历整个数组查找所有出现的元素,因此无法优化以查找第一个元素。还要注意,where和非零返回数组,因此需要选择第一个元素来获取索引。
In [71]: np.argmax(a==2)
Out[71]: 2
In [72]: np.where(a==2)
Out[72]: (array([2], dtype=int64),)
In [73]: np.nonzero(a==2)
Out[73]: (array([2], dtype=int64),)
时间比较
只是检查对于大型数组,当搜索项位于数组的开头时,使用迭代器的解决方案更快(在IPython shell中使用%timeit):
In [285]: a = np.arange(100000)
In [286]: %timeit next((idx for idx, val in np.ndenumerate(a) if val==0))
100000 loops, best of 3: 17.6 µs per loop
In [287]: %timeit np.argmax(a==0)
1000 loops, best of 3: 254 µs per loop
In [288]: %timeit np.where(a==0)[0][0]
1000 loops, best of 3: 314 µs per loop
这是一个开放的NumPy GitHub问题。
参见:Numpy:快速找到第一个值索引
其他回答
L.index (x)返回最小的I,使得I是x在列表中第一次出现的索引。
可以放心地假设,Python中的index()函数的实现使它在找到第一个匹配后停止,这将导致最佳的平均性能。
要在NumPy数组中找到第一个匹配后停止的元素,请使用迭代器(ndenumerate)。
In [67]: l=range(100)
In [68]: l.index(2)
Out[68]: 2
NumPy数组:
In [69]: a = np.arange(100)
In [70]: next((idx for idx, val in np.ndenumerate(a) if val==2))
Out[70]: (2L,)
注意,如果没有找到元素,index()和next方法都会返回一个错误。使用next,可以使用第二个参数在未找到元素时返回一个特殊值,例如:
In [77]: next((idx for idx, val in np.ndenumerate(a) if val==400),None)
NumPy中还有其他函数(argmax, where和nonzero)可用于在数组中查找元素,但它们都有一个缺点,即遍历整个数组查找所有出现的元素,因此无法优化以查找第一个元素。还要注意,where和非零返回数组,因此需要选择第一个元素来获取索引。
In [71]: np.argmax(a==2)
Out[71]: 2
In [72]: np.where(a==2)
Out[72]: (array([2], dtype=int64),)
In [73]: np.nonzero(a==2)
Out[73]: (array([2], dtype=int64),)
时间比较
只是检查对于大型数组,当搜索项位于数组的开头时,使用迭代器的解决方案更快(在IPython shell中使用%timeit):
In [285]: a = np.arange(100000)
In [286]: %timeit next((idx for idx, val in np.ndenumerate(a) if val==0))
100000 loops, best of 3: 17.6 µs per loop
In [287]: %timeit np.argmax(a==0)
1000 loops, best of 3: 254 µs per loop
In [288]: %timeit np.where(a==0)[0][0]
1000 loops, best of 3: 314 µs per loop
这是一个开放的NumPy GitHub问题。
参见:Numpy:快速找到第一个值索引
是的,给定一个数组,数组和一个值,要搜索的项,你可以使用np。的地方:
itemindex = numpy.where(array == item)
结果是一个元组,首先是所有的行索引,然后是所有的列索引。
例如,如果一个数组是二维的,它包含你的项目在两个位置,那么
array[itemindex[0][0]][itemindex[1][0]]
将等于你的项目,因此将是:
array[itemindex[0][1]][itemindex[1][1]]
numpy_indexed包(免责声明,我是它的作者)包含一个向量化的等效list。ndarray的索引;那就是:
sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]
import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx) # [2, -1]
这个解决方案具有向量化的性能,可以推广到ndarray,并且有各种处理缺失值的方法。
如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。
other_array[first_array == item]
任何布尔运算都可以:
a = numpy.arange(100)
other_array[first_array > 50]
非零方法也接受布尔值:
index = numpy.nonzero(first_array == item)[0][0]
两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。
8种方法的比较
TL; diana:
(注:适用于100M元素以下的1d数组)
为了获得最佳性能,请使用index_of__v5 (numba + numpy. 5)。枚举+ for循环;参见下面的代码)。 如果numba不可用: 如果期望在前100k个元素中找到目标值,请使用index_of__v7 (for循环+枚举)。 否则使用index_of__v2/v3/v4 (numpy. exe)。Argmax或numpy。基于flatnonzero)。
由perfplot提供
import numpy as np
from numba import njit
# Based on: numpy.argmax()
# Proposed by: John Haberstroh (https://stackoverflow.com/a/67497472/7204581)
def index_of__v1(arr: np.array, v):
is_v = (arr == v)
return is_v.argmax() if is_v.any() else -1
# Based on: numpy.argmax()
def index_of__v2(arr: np.array, v):
return (arr == v).argmax() if v in arr else -1
# Based on: numpy.flatnonzero()
# Proposed by: 1'' (https://stackoverflow.com/a/42049655/7204581)
def index_of__v3(arr: np.array, v):
idxs = np.flatnonzero(arr == v)
return idxs[0] if len(idxs) > 0 else -1
# Based on: numpy.argmax()
def index_of__v4(arr: np.array, v):
return np.r_[False, (arr == v)].argmax() - 1
# Based on: numba, for loop
# Proposed by: MSeifert (https://stackoverflow.com/a/41578614/7204581)
@njit
def index_of__v5(arr: np.array, v):
for idx, val in np.ndenumerate(arr):
if val == v:
return idx[0]
return -1
# Based on: numpy.ndenumerate(), for loop
def index_of__v6(arr: np.array, v):
return next((idx[0] for idx, val in np.ndenumerate(arr) if val == v), -1)
# Based on: enumerate(), for loop
# Proposed by: Noyer282 (https://stackoverflow.com/a/40426159/7204581)
def index_of__v7(arr: np.array, v):
return next((idx for idx, val in enumerate(arr) if val == v), -1)
# Based on: list.index()
# Proposed by: Hima (https://stackoverflow.com/a/23994923/7204581)
def index_of__v8(arr: np.array, v):
l = list(arr)
try:
return l.index(v)
except ValueError:
return -1
去Colab