我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

L.index (x)返回最小的I,使得I是x在列表中第一次出现的索引。

可以放心地假设,Python中的index()函数的实现使它在找到第一个匹配后停止,这将导致最佳的平均性能。

要在NumPy数组中找到第一个匹配后停止的元素,请使用迭代器(ndenumerate)。

In [67]: l=range(100)

In [68]: l.index(2)
Out[68]: 2

NumPy数组:

In [69]: a = np.arange(100)

In [70]: next((idx for idx, val in np.ndenumerate(a) if val==2))
Out[70]: (2L,)

注意,如果没有找到元素,index()和next方法都会返回一个错误。使用next,可以使用第二个参数在未找到元素时返回一个特殊值,例如:

In [77]: next((idx for idx, val in np.ndenumerate(a) if val==400),None)

NumPy中还有其他函数(argmax, where和nonzero)可用于在数组中查找元素,但它们都有一个缺点,即遍历整个数组查找所有出现的元素,因此无法优化以查找第一个元素。还要注意,where和非零返回数组,因此需要选择第一个元素来获取索引。

In [71]: np.argmax(a==2)
Out[71]: 2

In [72]: np.where(a==2)
Out[72]: (array([2], dtype=int64),)

In [73]: np.nonzero(a==2)
Out[73]: (array([2], dtype=int64),)

时间比较

只是检查对于大型数组,当搜索项位于数组的开头时,使用迭代器的解决方案更快(在IPython shell中使用%timeit):

In [285]: a = np.arange(100000)

In [286]: %timeit next((idx for idx, val in np.ndenumerate(a) if val==0))
100000 loops, best of 3: 17.6 µs per loop

In [287]: %timeit np.argmax(a==0)
1000 loops, best of 3: 254 µs per loop

In [288]: %timeit np.where(a==0)[0][0]
1000 loops, best of 3: 314 µs per loop

这是一个开放的NumPy GitHub问题。

参见:Numpy:快速找到第一个值索引

其他回答

numpy中内置了一种相当习惯的向量化方法。它使用np.argmax()函数的一个奇怪之处来完成这一点——如果有许多值匹配,它将返回第一个匹配的索引。诀窍在于,对于布尔值,将永远只有两个值:True(1)和False(0)。因此,返回的索引将是第一个True的索引。

对于所提供的简单示例,您可以看到它在以下情况下工作

>>> np.argmax(np.array([1,2,3]) == 2)
1

一个很好的例子是计算桶,例如用于分类。假设你有一个切割点数组,你想要对应数组中每个元素的“桶”。该算法是计算x < cuts处的第一个切割索引(在使用np. infinity填充切割之后)。我可以使用broadcast来广播比较,然后沿着cuts-broadcast轴应用argmax。

>>> cuts = np.array([10, 50, 100])
>>> cuts_pad = np.array([*cuts, np.Infinity])
>>> x   = np.array([7, 11, 80, 443])
>>> bins = np.argmax( x[:, np.newaxis] < cuts_pad[np.newaxis, :], axis = 1)
>>> print(bins)
[0, 1, 2, 3]

正如预期的那样,x中的每个值都属于一个连续的箱子,具有定义良好且易于指定的边界情况行为。

如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。

other_array[first_array == item]

任何布尔运算都可以:

a = numpy.arange(100)
other_array[first_array > 50]

非零方法也接受布尔值:

index = numpy.nonzero(first_array == item)[0][0]

两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。

是的,给定一个数组,数组和一个值,要搜索的项,你可以使用np。的地方:

itemindex = numpy.where(array == item)

结果是一个元组,首先是所有的行索引,然后是所有的列索引。

例如,如果一个数组是二维的,它包含你的项目在两个位置,那么

array[itemindex[0][0]][itemindex[1][0]]

将等于你的项目,因此将是:

array[itemindex[0][1]][itemindex[1][1]]

注意:这是python 2.7版本

您可以使用lambda函数来处理这个问题,它既适用于NumPy数组,也适用于列表。

your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]

import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]

你可以用

result[0]

获取筛选元素的第一个索引。

对于python 3.6,使用

list(result)

而不是

result

对于一维排序数组,使用numpy会更简单、更有效。searchsorted,返回一个NumPy整数(位置)。例如,

arr = np.array([1, 1, 1, 2, 3, 3, 4])
i = np.searchsorted(arr, 3)

只要确保数组已经排序

还要检查返回的索引i是否包含被搜索的元素,因为searchsorted的主要目标是找到应该插入元素以保持顺序的索引。

if arr[i] == 3:
    print("present")
else:
    print("not present")