我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。

other_array[first_array == item]

任何布尔运算都可以:

a = numpy.arange(100)
other_array[first_array > 50]

非零方法也接受布尔值:

index = numpy.nonzero(first_array == item)[0][0]

两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。

其他回答

numpy_indexed包(免责声明,我是它的作者)包含一个向量化的等效list。ndarray的索引;那就是:

sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]

import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx)   # [2, -1]

这个解决方案具有向量化的性能,可以推广到ndarray,并且有各种处理缺失值的方法。

numpy中内置了一种相当习惯的向量化方法。它使用np.argmax()函数的一个奇怪之处来完成这一点——如果有许多值匹配,它将返回第一个匹配的索引。诀窍在于,对于布尔值,将永远只有两个值:True(1)和False(0)。因此,返回的索引将是第一个True的索引。

对于所提供的简单示例,您可以看到它在以下情况下工作

>>> np.argmax(np.array([1,2,3]) == 2)
1

一个很好的例子是计算桶,例如用于分类。假设你有一个切割点数组,你想要对应数组中每个元素的“桶”。该算法是计算x < cuts处的第一个切割索引(在使用np. infinity填充切割之后)。我可以使用broadcast来广播比较,然后沿着cuts-broadcast轴应用argmax。

>>> cuts = np.array([10, 50, 100])
>>> cuts_pad = np.array([*cuts, np.Infinity])
>>> x   = np.array([7, 11, 80, 443])
>>> bins = np.argmax( x[:, np.newaxis] < cuts_pad[np.newaxis, :], axis = 1)
>>> print(bins)
[0, 1, 2, 3]

正如预期的那样,x中的每个值都属于一个连续的箱子,具有定义良好且易于指定的边界情况行为。

NumPy中有很多操作可以放在一起来完成这个任务。这将返回等于item的元素的下标:

numpy.nonzero(array - item)

然后你可以取列表的第一个元素来得到一个元素。

对于1D数组,我推荐np。平坦非零(array == value)[0],它等价于np。非零(array == value)[0][0]和np。其中(array == value)[0][0],但避免了对一个单元素元组开箱的丑陋。

要在任何标准上建立索引,你可以这样做:

In [1]: from numpy import *
In [2]: x = arange(125).reshape((5,5,5))
In [3]: y = indices(x.shape)
In [4]: locs = y[:,x >= 120] # put whatever you want in place of x >= 120
In [5]: pts = hsplit(locs, len(locs[0]))
In [6]: for pt in pts:
   .....:         print(', '.join(str(p[0]) for p in pt))
4, 4, 0
4, 4, 1
4, 4, 2
4, 4, 3
4, 4, 4

这里有一个快速函数,它可以做list.index()所做的事情,只是如果没有找到它,它不会引发异常。注意——这在大型数组上可能非常慢。如果你想把它作为一个方法,你也可以把它拼凑到数组上。

def ndindex(ndarray, item):
    if len(ndarray.shape) == 1:
        try:
            return [ndarray.tolist().index(item)]
        except:
            pass
    else:
        for i, subarray in enumerate(ndarray):
            try:
                return [i] + ndindex(subarray, item)
            except:
                pass

In [1]: ndindex(x, 103)
Out[1]: [4, 0, 3]