这里我要找的是PHP的print_r函数。

这样我就可以通过查看有问题的对象的状态来调试脚本。


当前回答

在大多数情况下,使用__dict__或dir()将获得你想要的信息。如果您碰巧需要更多的细节,标准库包括inspect模块,它允许您获得一些令人印象深刻的细节。一些真正宝贵的信息包括:

函数和方法参数的名称 类层次结构 实现一个函数/类对象的源代码 帧对象的局部变量

如果你只是在寻找“我的对象有哪些属性值?”,那么dir()和__dict__可能就足够了。如果您真的想深入研究任意对象的当前状态(请记住,在python中几乎所有东西都是对象),那么inspect值得考虑。

其他回答

一个有魔力的元编程示例转储对象:

$ cat dump.py
#!/usr/bin/python
import sys
if len(sys.argv) > 2:
    module, metaklass  = sys.argv[1:3]
    m = __import__(module, globals(), locals(), [metaklass])
    __metaclass__ = getattr(m, metaklass)

class Data:
    def __init__(self):
        self.num = 38
        self.lst = ['a','b','c']
        self.str = 'spam'
    dumps   = lambda self: repr(self)
    __str__ = lambda self: self.dumps()

data = Data()
print data

无参数:

$ python dump.py
<__main__.Data instance at 0x00A052D8>

与Gnosis Utils:

$ python dump.py gnosis.magic MetaXMLPickler
<?xml version="1.0"?>
<!DOCTYPE PyObject SYSTEM "PyObjects.dtd">
<PyObject module="__main__" class="Data" id="11038416">
<attr name="lst" type="list" id="11196136" >
  <item type="string" value="a" />
  <item type="string" value="b" />
  <item type="string" value="c" />
</attr>
<attr name="num" type="numeric" value="38" />
<attr name="str" type="string" value="spam" />
</PyObject>

虽然有点过时,但还能用。

我需要在一些日志中打印调试信息,无法使用pprint,因为它会破坏它。相反,我这样做了,得到了几乎相同的结果。

DO = DemoObject()

itemDir = DO.__dict__

for i in itemDir:
    print '{0}  :  {1}'.format(i, itemDir[i])
from pprint import pprint

def print_r(the_object):
    print ("CLASS: ", the_object.__class__.__name__, " (BASE CLASS: ", the_object.__class__.__bases__,")")
    pprint(vars(the_object))

你实际上是把两种不同的东西混合在一起。

使用dir(), vars()或inspect模块来获取您感兴趣的内容(我使用__builtins__作为示例;你可以用任何物体代替)。

>>> l = dir(__builtins__)
>>> d = __builtins__.__dict__

随你喜欢,把那本词典打印出来吧:

>>> print l
['ArithmeticError', 'AssertionError', 'AttributeError',...

or

>>> from pprint import pprint
>>> pprint(l)
['ArithmeticError',
 'AssertionError',
 'AttributeError',
 'BaseException',
 'DeprecationWarning',
...

>>> pprint(d, indent=2)
{ 'ArithmeticError': <type 'exceptions.ArithmeticError'>,
  'AssertionError': <type 'exceptions.AssertionError'>,
  'AttributeError': <type 'exceptions.AttributeError'>,
...
  '_': [ 'ArithmeticError',
         'AssertionError',
         'AttributeError',
         'BaseException',
         'DeprecationWarning',
...

Pretty print也可以在交互式调试器中作为命令使用:

(Pdb) pp vars()
{'__builtins__': {'ArithmeticError': <type 'exceptions.ArithmeticError'>,
                  'AssertionError': <type 'exceptions.AssertionError'>,
                  'AttributeError': <type 'exceptions.AttributeError'>,
                  'BaseException': <type 'exceptions.BaseException'>,
                  'BufferError': <type 'exceptions.BufferError'>,
                  ...
                  'zip': <built-in function zip>},
 '__file__': 'pass.py',
 '__name__': '__main__'}

也许值得一查——

Python中是否存在与Perl的Data:: dump相同的程序?

我的建议是——

https://gist.github.com/1071857

注意,perl有一个名为Data::Dumper的模块,它将对象数据转换回perl源代码(注意:它不将代码转换回源代码,而且几乎总是你不想在输出中使用对象方法函数)。这可以用于持久性,但常见的目的是用于调试。

标准的python pprint有很多事情无法实现,特别是当它看到一个对象的实例时,它只是停止下降,并给你对象的内部十六进制指针(errr,顺便说一下,这个指针并没有很多用处)。所以简而言之,python就是这个伟大的面向对象范式,但是你从盒子里拿出来的工具是为处理对象以外的东西而设计的。

perl Data::Dumper允许你控制你想要去的深度,还可以检测循环链接结构(这真的很重要)。这个过程在perl中更容易实现,因为对象除了它们的祝福之外没有任何特殊的魔力(一个普遍定义良好的过程)。