这个问题不是为了讨论单例设计模式是否可取、是否是一种反模式,或者是否用于任何宗教战争,而是为了讨论如何以最Python化的方式在Python中最好地实现这种模式。在这个例子中,我定义“最蟒蛇”是指它遵循“最少惊讶的原则”。

我有多个类将成为单类(我的用例是一个记录器,但这并不重要)。当我可以简单地继承或装饰时,我不希望在几个类中添加口香糖。

最佳方法:


方法1:装饰器

def singleton(class_):
    instances = {}
    def getinstance(*args, **kwargs):
        if class_ not in instances:
            instances[class_] = class_(*args, **kwargs)
        return instances[class_]
    return getinstance

@singleton
class MyClass(BaseClass):
    pass

Pros

装饰符的添加方式通常比多重继承更直观。

Cons

虽然使用MyClass()创建的对象将是真正的单例对象,但MyClass本身是一个函数,而不是类,因此不能从中调用类方法x=MyClass();y=MyClass();t=类型(n)();

则x==y但x!=t&y!=吨


方法2:基类

class Singleton(object):
    _instance = None
    def __new__(class_, *args, **kwargs):
        if not isinstance(class_._instance, class_):
            class_._instance = object.__new__(class_, *args, **kwargs)
        return class_._instance

class MyClass(Singleton, BaseClass):
    pass

Pros

这是一门真正的课

Cons

多重继承-嗯__new__是否可以在从第二个基类继承期间被覆盖?一个人必须想得比必要的多。


方法3:元类

class Singleton(type):
    _instances = {}
    def __call__(cls, *args, **kwargs):
        if cls not in cls._instances:
            cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
        return cls._instances[cls]

#Python2
class MyClass(BaseClass):
    __metaclass__ = Singleton

#Python3
class MyClass(BaseClass, metaclass=Singleton):
    pass

Pros

这是一门真正的课自动神奇地覆盖继承为正确的目的使用__metaclass__(并让我意识到)

Cons

有吗?


方法4:decorator返回同名类

def singleton(class_):
    class class_w(class_):
        _instance = None
        def __new__(class_, *args, **kwargs):
            if class_w._instance is None:
                class_w._instance = super(class_w,
                                    class_).__new__(class_,
                                                    *args,
                                                    **kwargs)
                class_w._instance._sealed = False
            return class_w._instance
        def __init__(self, *args, **kwargs):
            if self._sealed:
                return
            super(class_w, self).__init__(*args, **kwargs)
            self._sealed = True
    class_w.__name__ = class_.__name__
    return class_w

@singleton
class MyClass(BaseClass):
    pass

Pros

这是一门真正的课自动神奇地覆盖继承

Cons

创建每个新类是否没有开销?在这里,我们为每个希望成为单例的类创建两个类。虽然这对我来说很好,但我担心这可能无法扩展。当然,对于这种模式的规模是否太容易,还有争议。。。_seled属性的意义是什么无法使用super()在基类上调用同名方法,因为它们将递归。这意味着您不能自定义__new__,也不能对需要调用__init__的类进行子类化。


方法5:模块

模块文件singleton.py

Pros

简单胜于复杂

Cons

未延迟实例化


当前回答

如果您不需要对Singleton实例进行延迟初始化,那么以下操作应该是简单且线程安全的:

class A:
    instance = None
    # Methods and variables of the class/object A follow
A.instance = A()

这样,A是在模块导入时初始化的单例。

其他回答

这个解决方案在模块级别造成了一些命名空间污染(三个定义而不是一个),但我发现很容易理解。

我希望能够编写这样的东西(惰性初始化),但不幸的是,类在它们自己的定义体中不可用。

# wouldn't it be nice if we could do this?
class Foo(object):
    instance = None

    def __new__(cls):
        if cls.instance is None:
            cls.instance = object()
            cls.instance.__class__ = Foo
        return cls.instance

由于这是不可能的,我们可以在

Eagle初始化:

import random


class FooMaker(object):
    def __init__(self, *args):
        self._count = random.random()
        self._args = args


class Foo(object):
    def __new__(self):
        return foo_instance


foo_instance = FooMaker()
foo_instance.__class__ = Foo

延迟初始化:

Eagle初始化:

import random


class FooMaker(object):
    def __init__(self, *args):
        self._count = random.random()
        self._args = args


class Foo(object):
    def __new__(self):
        global foo_instance
        if foo_instance is None:
            foo_instance = FooMaker()
        return foo_instance


foo_instance = None

查看堆栈溢出问题是否有一种简单、优雅的方法来定义Python中的单体?有几种解决方案。

我强烈建议观看Alex Martelli关于python中设计模式的演讲:第1部分和第2部分。特别是,在第1部分中,他谈到了单态/共享状态对象。

代码基于Tolli的答案。

#decorator, modyfies new_cls
def _singleton(new_cls):
    instance = new_cls()                                              #2
    def new(cls):
        if isinstance(instance, cls):                                 #4
            return instance
        else:
            raise TypeError("I can only return instance of {}, caller wanted {}".format(new_cls, cls))
    new_cls.__new__  = new                                            #3
    new_cls.__init__ = lambda self: None                              #5
    return new_cls


#decorator, creates new class
def singleton(cls):
    new_cls = type('singleton({})'.format(cls.__name__), (cls,), {} ) #1
    return _singleton(new_cls)


#metaclass
def meta_singleton(name, bases, attrs):
    new_cls = type(name, bases, attrs)                                #1
    return _singleton(new_cls)

说明:

创建新类,继承给定的cls(如果有人想要例如singleton(list),它不会修改cls)创建实例。在覆盖__new__之前,这很简单。现在,当我们轻松创建实例时,使用刚才定义的方法重写__new__。该函数仅在调用方期望的情况下返回实例,否则引发TypeError。当某人试图从修饰类继承时,该条件不满足。如果__new__()返回cls的一个实例,那么新实例的__init__()方法将像__init__一样被调用(self[,…]),其中self是新实例,其余参数与传递给__new__的参数相同。实例已初始化,因此函数将__init__替换为不执行任何操作的函数。

看到它在线工作

您可能永远不需要Python中的单例。只需在一个模块中定义所有数据和函数,就可以得到事实上的单例:

import datetime
file_name=None

def set_file_name(new_file_name: str):
    global file_name
    file_name=new_file_name

def write(message: str):
    global file_name
    if file_name:
        with open(file_name, 'a+') as f:
            f.write("{} {}\n".format(datetime.datetime.now(), message))
    else:
        print("LOG: {}", message)

要使用:

import log
log.set_file_name("debug.log")
log.write("System starting")
...

如果你真的必须有一个单独的类,那么我会选择:

class MySingleton(object):
    def foo(self):
        pass

my_singleton = MySingleton()

要使用:

from mysingleton import my_singleton
my_singleton.foo()

其中mysingleton.py是定义mysingleton的文件名。这是因为在第一次导入文件后,Python不会重新执行代码。

我会把我的扔到戒指里。这是一个简单的装饰器。

from abc import ABC

def singleton(real_cls):

    class SingletonFactory(ABC):

        instance = None

        def __new__(cls, *args, **kwargs):
            if not cls.instance:
                cls.instance = real_cls(*args, **kwargs)
            return cls.instance

    SingletonFactory.register(real_cls)
    return SingletonFactory

# Usage
@singleton
class YourClass:
    ...  # Your normal implementation, no special requirements.

我认为它比其他一些解决方案有好处:

它清晰简洁(在我看来;D)。它的作用是完全封闭的。你不需要改变YourClass的实现。这包括不需要为类使用元类(请注意,上面的元类在工厂中,而不是“真实”类)。它不依赖猴子修补任何东西。它对呼叫者是透明的:调用者仍然只是简单地导入YourClass,它看起来像一个类(因为它是),并且他们正常使用它。无需使调用者适应工厂函数。YourClass()实例化的仍然是您实现的YourClass的真实实例,而不是任何类型的代理,因此不会产生任何副作用。isinstance(例如,YourClass)和类似的操作仍按预期工作(尽管这个位确实需要abc,因此排除了Python<2.6)。

一个缺点确实出现在我身上:真实类的类方法和静态方法不能通过隐藏它的工厂类透明地调用。我很少使用这种方法,我从来没有遇到过这种需要,但通过在工厂上使用一个自定义元类来实现__getattr__(),将所有的属性访问委托给真实类,这很容易纠正。

我实际上发现了一个更有用的相关模式(我并不是说这类事情经常需要),那就是“唯一”模式,用相同的参数实例化类会得到相同的实例。即“每个参数一个”。上述内容很好地适应了这一点,变得更加简洁:

def unique(real_cls):

    class UniqueFactory(ABC):

        @functools.lru_cache(None)  # Handy for 3.2+, but use any memoization decorator you like
        def __new__(cls, *args, **kwargs):
            return real_cls(*args, **kwargs)

    UniqueFactory.register(real_cls)
    return UniqueFactory

尽管如此,我还是同意一般的建议,如果你认为你需要这些东西中的一件,你真的应该停下来问问自己是否真的需要。