如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

以下是我的解决方案:

public static int div_by_3(long a) {
    a <<= 30;
    for(int i = 2; i <= 32 ; i <<= 1) {
        a = add(a, a >> i);
    }
    return (int) (a >> 32);
}

public static long add(long a, long b) {
    long carry = (a & b) << 1;
    long sum = (a ^ b);
    return carry == 0 ? sum : add(carry, sum);
}

首先,请注意

1/3 = 1/4 + 1/16 + 1/64 + ...

现在,剩下的很简单!

a/3 = a * 1/3  
a/3 = a * (1/4 + 1/16 + 1/64 + ...)
a/3 = a/4 + a/16 + 1/64 + ...
a/3 = a >> 2 + a >> 4 + a >> 6 + ...

现在我们要做的就是把a的这些位移位值加在一起!哦!但是我们不能做加法,所以我们必须使用位操作符来编写一个加法函数!如果您熟悉逐位操作符,那么我的解决方案应该看起来相当简单……但以防你不懂,我会在最后讲一个例子。

另一件需要注意的事情是,首先我左移30!这是为了确保分数不会四舍五入。

11 + 6

1011 + 0110  
sum = 1011 ^ 0110 = 1101  
carry = (1011 & 0110) << 1 = 0010 << 1 = 0100  
Now you recurse!

1101 + 0100  
sum = 1101 ^ 0100 = 1001  
carry = (1101 & 0100) << 1 = 0100 << 1 = 1000  
Again!

1001 + 1000  
sum = 1001 ^ 1000 = 0001  
carry = (1001 & 1000) << 1 = 1000 << 1 = 10000  
One last time!

0001 + 10000
sum = 0001 ^ 10000 = 10001 = 17  
carry = (0001 & 10000) << 1 = 0

Done!

这就是你小时候学过的简单加法!

111
 1011
+0110
-----
10001

这个实现失败了,因为我们不能把方程的所有项相加:

a / 3 = a/4 + a/4^2 + a/4^3 + ... + a/4^i + ... = f(a, i) + a * 1/3 * 1/4^i
f(a, i) = a/4 + a/4^2 + ... + a/4^i

假设div_by_3(a) = x的结果,则x <= floor(f(a, i)) < a / 3。当a = 3k时,我们得到错误的答案。

其他回答

如果你提醒自己标准的学校除法方法,用二进制来做,你会发现在3的情况下,你只是在有限的一组值中除法和减法(在这种情况下,从0到5)。这些可以用switch语句处理,以摆脱算术运算符。

static unsigned lamediv3(unsigned n)
{
  unsigned result = 0, remainder = 0, mask = 0x80000000;

  // Go through all bits of n from MSB to LSB.
  for (int i = 0; i < 32; i++, mask >>= 1)
  {
    result <<= 1;
    // Shift in the next bit of n into remainder.
    remainder = remainder << 1 | !!(n & mask);

    // Divide remainder by 3, update result and remainer.
    // If remainder is less than 3, it remains intact.
    switch (remainder)
    {
    case 3:
      result |= 1;
      remainder = 0;
      break;

    case 4:
      result |= 1;
      remainder = 1;
      break;

    case 5:
      result |= 1;
      remainder = 2;
      break;
    }
  }

  return result;
}

#include <cstdio>

int main()
{
  // Verify for all possible values of a 32-bit unsigned integer.
  unsigned i = 0;

  do
  {
    unsigned d = lamediv3(i);

    if (i / 3 != d)
    {
      printf("failed for %u: %u != %u\n", i, d, i / 3);
      return 1;
    }
  }
  while (++i != 0);
}
log(pow(exp(number),0.33333333333333333333)) /* :-) */

下面的脚本生成了一个C程序,可以在不使用运算符* / + - %的情况下解决这个问题:

#!/usr/bin/env python3

print('''#include <stdint.h>
#include <stdio.h>
const int32_t div_by_3(const int32_t input)
{
''')

for i in range(-2**31, 2**31):
    print('    if(input == %d) return %d;' % (i, i / 3))


print(r'''
    return 42; // impossible
}
int main()
{
    const int32_t number = 8;
    printf("%d / 3 = %d\n", number, div_by_3(number));
}
''')

要将一个32位数字除以3,可以将其乘以0x55555556,然后取64位结果的前32位。

现在剩下要做的就是使用位运算和移位来实现乘法…

int div3(int x)
{
  int reminder = abs(x);
  int result = 0;
  while(reminder >= 3)
  {
     result++;

     reminder--;
     reminder--;
     reminder--;
  }
  return result;
}