如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
下面的脚本生成了一个C程序,可以在不使用运算符* / + - %的情况下解决这个问题:
#!/usr/bin/env python3
print('''#include <stdint.h>
#include <stdio.h>
const int32_t div_by_3(const int32_t input)
{
''')
for i in range(-2**31, 2**31):
print(' if(input == %d) return %d;' % (i, i / 3))
print(r'''
return 42; // impossible
}
int main()
{
const int32_t number = 8;
printf("%d / 3 = %d\n", number, div_by_3(number));
}
''')
其他回答
哪里InputValue是数字除以3
SELECT AVG(NUM)
FROM (SELECT InputValue NUM from sys.dual
UNION ALL SELECT 0 from sys.dual
UNION ALL SELECT 0 from sys.dual) divby3
(注意:查看下面的编辑2以获得更好的版本!)
这并不像听起来那么棘手,因为你说“没有使用[..+[…]运营商”。如果你想禁止同时使用+字符,请参见下面。
unsigned div_by(unsigned const x, unsigned const by) {
unsigned floor = 0;
for (unsigned cmp = 0, r = 0; cmp <= x;) {
for (unsigned i = 0; i < by; i++)
cmp++; // that's not the + operator!
floor = r;
r++; // neither is this.
}
return floor;
}
然后用div_by(100,3)将100除以3。
编辑:你可以继续并替换++操作符:
unsigned inc(unsigned x) {
for (unsigned mask = 1; mask; mask <<= 1) {
if (mask & x)
x &= ~mask;
else
return x & mask;
}
return 0; // overflow (note that both x and mask are 0 here)
}
编辑2:稍快的版本,不使用任何包含+、-、*、/、%字符的操作符。
unsigned add(char const zero[], unsigned const x, unsigned const y) {
// this exploits that &foo[bar] == foo+bar if foo is of type char*
return (int)(uintptr_t)(&((&zero[x])[y]));
}
unsigned div_by(unsigned const x, unsigned const by) {
unsigned floor = 0;
for (unsigned cmp = 0, r = 0; cmp <= x;) {
cmp = add(0,cmp,by);
floor = r;
r = add(0,r,1);
}
return floor;
}
我们使用add函数的第一个参数,因为不使用*字符就不能表示指针的类型,除非在函数形参列表中,其中的语法类型[]与类型* const相同。
FWIW,你可以很容易地实现一个乘法函数使用类似的技巧使用0x55555556技巧提出的AndreyT:
int mul(int const x, int const y) {
return sizeof(struct {
char const ignore[y];
}[x]);
}
这真的很简单。
if (number == 0) return 0;
if (number == 1) return 0;
if (number == 2) return 0;
if (number == 3) return 1;
if (number == 4) return 1;
if (number == 5) return 1;
if (number == 6) return 2;
(当然,为了简洁起见,我省略了一些程序。)如果程序员厌倦了把这些都输入,我相信他或她可以编写一个单独的程序来为他生成这些。我碰巧认识一个能大大简化他工作的人。
使用itoa转换为以3为基数的字符串。去掉最后一个小调,转换回10进制。
// Note: itoa is non-standard but actual implementations
// don't seem to handle negative when base != 10.
int div3(int i) {
char str[42];
sprintf(str, "%d", INT_MIN); // Put minus sign at str[0]
if (i>0) // Remove sign if positive
str[0] = ' ';
itoa(abs(i), &str[1], 3); // Put ternary absolute value starting at str[1]
str[strlen(&str[1])] = '\0'; // Drop last digit
return strtol(str, NULL, 3); // Read back result
}
以下是我的解决方案:
public static int div_by_3(long a) {
a <<= 30;
for(int i = 2; i <= 32 ; i <<= 1) {
a = add(a, a >> i);
}
return (int) (a >> 32);
}
public static long add(long a, long b) {
long carry = (a & b) << 1;
long sum = (a ^ b);
return carry == 0 ? sum : add(carry, sum);
}
首先,请注意
1/3 = 1/4 + 1/16 + 1/64 + ...
现在,剩下的很简单!
a/3 = a * 1/3
a/3 = a * (1/4 + 1/16 + 1/64 + ...)
a/3 = a/4 + a/16 + 1/64 + ...
a/3 = a >> 2 + a >> 4 + a >> 6 + ...
现在我们要做的就是把a的这些位移位值加在一起!哦!但是我们不能做加法,所以我们必须使用位操作符来编写一个加法函数!如果您熟悉逐位操作符,那么我的解决方案应该看起来相当简单……但以防你不懂,我会在最后讲一个例子。
另一件需要注意的事情是,首先我左移30!这是为了确保分数不会四舍五入。
11 + 6
1011 + 0110
sum = 1011 ^ 0110 = 1101
carry = (1011 & 0110) << 1 = 0010 << 1 = 0100
Now you recurse!
1101 + 0100
sum = 1101 ^ 0100 = 1001
carry = (1101 & 0100) << 1 = 0100 << 1 = 1000
Again!
1001 + 1000
sum = 1001 ^ 1000 = 0001
carry = (1001 & 1000) << 1 = 1000 << 1 = 10000
One last time!
0001 + 10000
sum = 0001 ^ 10000 = 10001 = 17
carry = (0001 & 10000) << 1 = 0
Done!
这就是你小时候学过的简单加法!
111
1011
+0110
-----
10001
这个实现失败了,因为我们不能把方程的所有项相加:
a / 3 = a/4 + a/4^2 + a/4^3 + ... + a/4^i + ... = f(a, i) + a * 1/3 * 1/4^i
f(a, i) = a/4 + a/4^2 + ... + a/4^i
假设div_by_3(a) = x的结果,则x <= floor(f(a, i)) < a / 3。当a = 3k时,我们得到错误的答案。