如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

使用itoa转换为以3为基数的字符串。去掉最后一个小调,转换回10进制。

// Note: itoa is non-standard but actual implementations
// don't seem to handle negative when base != 10.
int div3(int i) {
    char str[42];
    sprintf(str, "%d", INT_MIN); // Put minus sign at str[0]
    if (i>0)                     // Remove sign if positive
        str[0] = ' ';
    itoa(abs(i), &str[1], 3);    // Put ternary absolute value starting at str[1]
    str[strlen(&str[1])] = '\0'; // Drop last digit
    return strtol(str, NULL, 3); // Read back result
}

其他回答

3以2为底等于11。

所以只要做长除法(就像中学那样),以2 × 11为底。以2为底比以10为底更简单。

对于从最有效位开始的每个位位:

判断prefix是否小于11。

如果它是输出0。

如果不是输出1,则替换前缀位进行适当的更改。只有三种情况:

 11xxx ->    xxx    (ie 3 - 3 = 0)
100xxx ->   1xxx    (ie 4 - 3 = 1)
101xxx ->  10xxx    (ie 5 - 3 = 2)

所有其他前缀都不可达。

重复到最低位,你就完成了。

你可以考虑用图或树状结构来解决这个问题。基本上生成的顶点数与要除以3的数一样多。然后继续将每个未配对的顶点与其他两个顶点配对。

粗糙的伪代码:

function divide(int num)
    while(num!=0)
        Add a new vertice to vertiexList.
        num--
    quotient = 0
    for each in vertexList(lets call this vertex A)
        if vertexList not empty
            Add an edge between A and another vertex(say B)
        else
            your Remainder is 1 and Quotient is quotient
        if vertexList not empty
            Add an edge between A and another vertex(say C)
        else
            your remainder is 2 and Quotient is quotient
        quotient++
        remove A, B, C from vertexList
    Remainder is 0 and Quotient is quotient

这显然是可以优化的,复杂度取决于你的数字有多大,但它应该工作,只要你能做++和——。 这就像数更酷的东西一样。

这是一个执行所需操作的简单函数。但是它需要+操作符,所以你所要做的就是用位操作符来加值:

// replaces the + operator
int add(int x, int y)
{
    while (x) {
        int t = (x & y) << 1;
        y ^= x;
        x = t;
    }
    return y;
}

int divideby3(int num)
{
    int sum = 0;
    while (num > 3) {
        sum = add(num >> 2, sum);
        num = add(num >> 2, num & 3);
    }
    if (num == 3)
        sum = add(sum, 1);
    return sum; 
}

正如吉姆评论的那样,这是可行的,因为:

N = 4 * a + b N / 3 = a + (a + b) / 3 sum += an = a + b,然后迭代 当a == 0 (n < 4)时,sum += floor(n / 3);即1,如果n == 3,否则为0

Yet another solution. This should handle all ints (including negative ints) except the min value of an int, which would need to be handled as a hard coded exception. This basically does division by subtraction but only using bit operators (shifts, xor, & and complement). For faster speed, it subtracts 3 * (decreasing powers of 2). In c#, it executes around 444 of these DivideBy3 calls per millisecond (2.2 seconds for 1,000,000 divides), so not horrendously slow, but no where near as fast as a simple x/3. By comparison, Coodey's nice solution is about 5 times faster than this one.

public static int DivideBy3(int a) {
    bool negative = a < 0;
    if (negative) a = Negate(a);
    int result;
    int sub = 3 << 29;
    int threes = 1 << 29;
    result = 0;
    while (threes > 0) {
        if (a >= sub) {
            a = Add(a, Negate(sub));
            result = Add(result, threes);
        }
        sub >>= 1;
        threes >>= 1;
    }
    if (negative) result = Negate(result);
    return result;
}
public static int Negate(int a) {
    return Add(~a, 1);
}
public static int Add(int a, int b) {
    int x = 0;
    x = a ^ b;
    while ((a & b) != 0) {
        b = (a & b) << 1;
        a = x;
        x = a ^ b;
    }
    return x;
}

这是c#,因为这是我手边的东西,但与c的区别应该很小。

似乎没有人提到用二进制表示的3的除法准则——偶数的和应该等于奇数的和(类似于十进制中11的准则)。在“检查一个数是否能被3整除”一栏中有使用这个技巧的解决方案。

我想这就是迈克尔·伯尔的编辑提到的可能的复制品。