在R中,当您需要根据列名检索列索引时,您可以这样做

idx <- which(names(my_data)==my_colum_name)

有没有办法对熊猫数据框架做同样的事情?


当前回答

import random
def char_range(c1, c2):                      # question 7001144
    for c in range(ord(c1), ord(c2)+1):
        yield chr(c)      
df = pd.DataFrame()
for c in char_range('a', 'z'):               
    df[f'{c}'] = random.sample(range(10), 3) # Random Data
rearranged = random.sample(range(26), 26)    # Random Order
df = df.iloc[:, rearranged]
print(df.iloc[:,:15])                        # 15 Col View         

for col in df.columns:             # List of indices and columns
    print(str(df.columns.get_loc(col)) + '\t' + col)

![结果](结果

其他回答

这里有一个通过列表理解的解决方案。Cols是要获取索引的列的列表:

[df.columns.get_loc(c) for c in cols if c in df]

当您希望找到多个列匹配时,可以使用使用searchsorted方法的向量化解决方案。因此,df作为数据帧,query_cols作为要搜索的列名,实现将是-

def column_index(df, query_cols):
    cols = df.columns.values
    sidx = np.argsort(cols)
    return sidx[np.searchsorted(cols,query_cols,sorter=sidx)]

试运行-

In [162]: df
Out[162]: 
   apple  banana  pear  orange  peach
0      8       3     4       4      2
1      4       4     3       0      1
2      1       2     6       8      1

In [163]: column_index(df, ['peach', 'banana', 'apple'])
Out[163]: array([4, 1, 0])
import random
def char_range(c1, c2):                      # question 7001144
    for c in range(ord(c1), ord(c2)+1):
        yield chr(c)      
df = pd.DataFrame()
for c in char_range('a', 'z'):               
    df[f'{c}'] = random.sample(range(10), 3) # Random Data
rearranged = random.sample(range(26), 26)    # Random Order
df = df.iloc[:, rearranged]
print(df.iloc[:,:15])                        # 15 Col View         

for col in df.columns:             # List of indices and columns
    print(str(df.columns.get_loc(col)) + '\t' + col)

![结果](结果

DSM的解决方案是有效的,但是如果你想要一个直接等价的方法(df。Columns == name).nonzero()

稍微修改一下DSM的答案,get_loc有一些奇怪的属性,这取决于当前版本Pandas(1.1.5)中的索引类型,因此根据您的索引类型,您可能会返回索引、掩码或切片。这对我来说有点令人沮丧,因为我不想仅仅为了提取一个变量的索引而修改整个列。更简单的方法是完全避免这个函数:

list(df.columns).index('pear')

非常简单,而且可能相当快。