在R中,当您需要根据列名检索列索引时,您可以这样做

idx <- which(names(my_data)==my_colum_name)

有没有办法对熊猫数据框架做同样的事情?


当前回答

import random
def char_range(c1, c2):                      # question 7001144
    for c in range(ord(c1), ord(c2)+1):
        yield chr(c)      
df = pd.DataFrame()
for c in char_range('a', 'z'):               
    df[f'{c}'] = random.sample(range(10), 3) # Random Data
rearranged = random.sample(range(26), 26)    # Random Order
df = df.iloc[:, rearranged]
print(df.iloc[:,:15])                        # 15 Col View         

for col in df.columns:             # List of indices and columns
    print(str(df.columns.get_loc(col)) + '\t' + col)

![结果](结果

其他回答

当然,你可以使用.get_loc():

In [45]: df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})

In [46]: df.columns
Out[46]: Index([apple, orange, pear], dtype=object)

In [47]: df.columns.get_loc("pear")
Out[47]: 2

尽管说实话,我自己并不经常需要这个。通常通过名称进行访问(df["pear"], df[["apple", "orange"]]),或者可能是df.columns。isin(["orange", "pear"]))),尽管我可以肯定地看到您想要索引号的情况。

这里有一个通过列表理解的解决方案。Cols是要获取索引的列的列表:

[df.columns.get_loc(c) for c in cols if c in df]

更新:" 0.25.0版后已移除:使用np.asarray(..)或DataFrame.values()代替。

如果你想从列位置获取列名(与OP问题相反),你可以使用:

>>> df.columns.values()[location]

使用@DSM示例:

>>> df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})

>>> df.columns

Index(['apple', 'orange', 'pear'], dtype='object')

>>> df.columns.values()[1]

'orange'

其他方式:

df.iloc[:,1].name

df.columns[location] #(thanks to @roobie-nuby for pointing that out in comments.) 

当列可能存在,也可能不存在时,下面的(来自上面的变体)可以工作。

ix = 'none'
try:
     ix = list(df.columns).index('Col_X')
except ValueError as e:
     ix = None  
     pass

if ix is None:
   # do something

当您希望找到多个列匹配时,可以使用使用searchsorted方法的向量化解决方案。因此,df作为数据帧,query_cols作为要搜索的列名,实现将是-

def column_index(df, query_cols):
    cols = df.columns.values
    sidx = np.argsort(cols)
    return sidx[np.searchsorted(cols,query_cols,sorter=sidx)]

试运行-

In [162]: df
Out[162]: 
   apple  banana  pear  orange  peach
0      8       3     4       4      2
1      4       4     3       0      1
2      1       2     6       8      1

In [163]: column_index(df, ['peach', 'banana', 'apple'])
Out[163]: array([4, 1, 0])