在R中,当您需要根据列名检索列索引时,您可以这样做
idx <- which(names(my_data)==my_colum_name)
有没有办法对熊猫数据框架做同样的事情?
在R中,当您需要根据列名检索列索引时,您可以这样做
idx <- which(names(my_data)==my_colum_name)
有没有办法对熊猫数据框架做同样的事情?
当前回答
当列可能存在,也可能不存在时,下面的(来自上面的变体)可以工作。
ix = 'none'
try:
ix = list(df.columns).index('Col_X')
except ValueError as e:
ix = None
pass
if ix is None:
# do something
其他回答
import random
def char_range(c1, c2): # question 7001144
for c in range(ord(c1), ord(c2)+1):
yield chr(c)
df = pd.DataFrame()
for c in char_range('a', 'z'):
df[f'{c}'] = random.sample(range(10), 3) # Random Data
rearranged = random.sample(range(26), 26) # Random Order
df = df.iloc[:, rearranged]
print(df.iloc[:,:15]) # 15 Col View
for col in df.columns: # List of indices and columns
print(str(df.columns.get_loc(col)) + '\t' + col)
 for c in cols if c in df]
这个怎么样:
df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})
out = np.argwhere(df.columns.isin(['apple', 'orange'])).ravel()
print(out)
[1 2]
当然,你可以使用.get_loc():
In [45]: df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})
In [46]: df.columns
Out[46]: Index([apple, orange, pear], dtype=object)
In [47]: df.columns.get_loc("pear")
Out[47]: 2
尽管说实话,我自己并不经常需要这个。通常通过名称进行访问(df["pear"], df[["apple", "orange"]]),或者可能是df.columns。isin(["orange", "pear"]))),尽管我可以肯定地看到您想要索引号的情况。
当列可能存在,也可能不存在时,下面的(来自上面的变体)可以工作。
ix = 'none'
try:
ix = list(df.columns).index('Col_X')
except ValueError as e:
ix = None
pass
if ix is None:
# do something