在R中,当您需要根据列名检索列索引时,您可以这样做
idx <- which(names(my_data)==my_colum_name)
有没有办法对熊猫数据框架做同样的事情?
在R中,当您需要根据列名检索列索引时,您可以这样做
idx <- which(names(my_data)==my_colum_name)
有没有办法对熊猫数据框架做同样的事情?
当前回答
DSM的解决方案是有效的,但是如果你想要一个直接等价的方法(df。Columns == name).nonzero()
其他回答
对于返回多列索引,我建议使用pandas。索引方法get_indexer,如果你有唯一的标签:
df = pd.DataFrame({"pear": [1, 2, 3], "apple": [2, 3, 4], "orange": [3, 4, 5]})
df.columns.get_indexer(['pear', 'apple'])
# Out: array([0, 1], dtype=int64)
如果索引中有非唯一的标签(列只支持唯一的标签)它接受与get_indexer相同的参数:
df = pd.DataFrame(
{"pear": [1, 2, 3], "apple": [2, 3, 4], "orange": [3, 4, 5]},
index=[0, 1, 1])
df.index.get_indexer_for([0, 1])
# Out: array([0, 1, 2], dtype=int64)
这两种方法也都支持使用,f.i.的非精确索引,浮点值取有容差的最近值。如果两个索引到指定标签的距离相同或重复,则选择索引值较大的索引:
df = pd.DataFrame(
{"pear": [1, 2, 3], "apple": [2, 3, 4], "orange": [3, 4, 5]},
index=[0, .9, 1.1])
df.index.get_indexer([0, 1])
# array([ 0, -1], dtype=int64)
当然,你可以使用.get_loc():
In [45]: df = DataFrame({"pear": [1,2,3], "apple": [2,3,4], "orange": [3,4,5]})
In [46]: df.columns
Out[46]: Index([apple, orange, pear], dtype=object)
In [47]: df.columns.get_loc("pear")
Out[47]: 2
尽管说实话,我自己并不经常需要这个。通常通过名称进行访问(df["pear"], df[["apple", "orange"]]),或者可能是df.columns。isin(["orange", "pear"]))),尽管我可以肯定地看到您想要索引号的情况。
当列可能存在,也可能不存在时,下面的(来自上面的变体)可以工作。
ix = 'none'
try:
ix = list(df.columns).index('Col_X')
except ValueError as e:
ix = None
pass
if ix is None:
# do something
这里有一个通过列表理解的解决方案。Cols是要获取索引的列的列表:
[df.columns.get_loc(c) for c in cols if c in df]
DSM的解决方案是有效的,但是如果你想要一个直接等价的方法(df。Columns == name).nonzero()