什么时候使用List和LinkedList更好?
当前回答
我之前的回答不够准确。 D是正确答案 但现在我可以发布更有用和正确的答案。
我做了一些额外的检查您可以通过以下链接找到它的源代码,并在您自己的环境中通过https://github.com/ukushu/DataStructuresTestsAndOther.git重新检查它
短的结果:
Array need to use: So often as possible. It's fast and takes smallest RAM range for same amount information. If you know exact count of cells needed If data saved in array < 85000 b (85000/32 = 2656 elements for integer data) If needed high Random Access speed List need to use: If needed to add cells to the end of list (often) If needed to add cells in the beginning/middle of the list (NOT OFTEN) If data saved in array < 85000 b (85000/32 = 2656 elements for integer data) If needed high Random Access speed LinkedList need to use: If needed to add cells in the beginning/middle/end of the list (often) If needed only sequential access (forward/backward) If you need to save LARGE items, but items count is low. Better do not use for large amount of items, as it's use additional memory for links.
更多的细节:
有趣的是:
LinkedList<T> internally is not a List in .NET. It's even does not implement IList<T>. And that's why there are absent indexes and methods related to indexes. LinkedList<T> is node-pointer based collection. In .NET it's in doubly linked implementation. This means that prior/next elements have link to current element. And data is fragmented -- different list objects can be located in different places of RAM. Also there will be more memory used for LinkedList<T> than for List<T> or Array. List<T> in .Net is Java's alternative of ArrayList<T>. This means that this is array wrapper. So it's allocated in memory as one contiguous block of data. If allocated data size exceeds 85000 bytes, it will be moved to Large Object Heap. Depending on the size, this can lead to heap fragmentation(a mild form of memory leak). But in the same time if size < 85000 bytes -- this provides a very compact and fast-access representation in memory. Single contiguous block is preferred for random access performance and memory consumption but for collections that need to change size regularly a structure such as an Array generally need to be copied to a new location whereas a linked list only needs to manage the memory for the newly inserted/deleted nodes.
其他回答
使用LinkedList<>时
你不知道有多少东西会通过防洪闸门。例如,令牌流。 当你只想在结尾删除\插入。
对于其他内容,最好使用List<>。
我之前的回答不够准确。 D是正确答案 但现在我可以发布更有用和正确的答案。
我做了一些额外的检查您可以通过以下链接找到它的源代码,并在您自己的环境中通过https://github.com/ukushu/DataStructuresTestsAndOther.git重新检查它
短的结果:
Array need to use: So often as possible. It's fast and takes smallest RAM range for same amount information. If you know exact count of cells needed If data saved in array < 85000 b (85000/32 = 2656 elements for integer data) If needed high Random Access speed List need to use: If needed to add cells to the end of list (often) If needed to add cells in the beginning/middle of the list (NOT OFTEN) If data saved in array < 85000 b (85000/32 = 2656 elements for integer data) If needed high Random Access speed LinkedList need to use: If needed to add cells in the beginning/middle/end of the list (often) If needed only sequential access (forward/backward) If you need to save LARGE items, but items count is low. Better do not use for large amount of items, as it's use additional memory for links.
更多的细节:
有趣的是:
LinkedList<T> internally is not a List in .NET. It's even does not implement IList<T>. And that's why there are absent indexes and methods related to indexes. LinkedList<T> is node-pointer based collection. In .NET it's in doubly linked implementation. This means that prior/next elements have link to current element. And data is fragmented -- different list objects can be located in different places of RAM. Also there will be more memory used for LinkedList<T> than for List<T> or Array. List<T> in .Net is Java's alternative of ArrayList<T>. This means that this is array wrapper. So it's allocated in memory as one contiguous block of data. If allocated data size exceeds 85000 bytes, it will be moved to Large Object Heap. Depending on the size, this can lead to heap fragmentation(a mild form of memory leak). But in the same time if size < 85000 bytes -- this provides a very compact and fast-access representation in memory. Single contiguous block is preferred for random access performance and memory consumption but for collections that need to change size regularly a structure such as an Array generally need to be copied to a new location whereas a linked list only needs to manage the memory for the newly inserted/deleted nodes.
我问了一个类似的关于LinkedList集合性能的问题,发现Steven Cleary的Deque c#实现是一个解决方案。与Queue集合不同,Deque允许前后移动项目。它类似于链表,但性能有所改进。
这是改编自Tono Nam的公认的答案,纠正了一些错误的测量。
测试:
static void Main()
{
LinkedListPerformance.AddFirst_List(); // 12028 ms
LinkedListPerformance.AddFirst_LinkedList(); // 33 ms
LinkedListPerformance.AddLast_List(); // 33 ms
LinkedListPerformance.AddLast_LinkedList(); // 32 ms
LinkedListPerformance.Enumerate_List(); // 1.08 ms
LinkedListPerformance.Enumerate_LinkedList(); // 3.4 ms
//I tried below as fun exercise - not very meaningful, see code
//sort of equivalent to insertion when having the reference to middle node
LinkedListPerformance.AddMiddle_List(); // 5724 ms
LinkedListPerformance.AddMiddle_LinkedList1(); // 36 ms
LinkedListPerformance.AddMiddle_LinkedList2(); // 32 ms
LinkedListPerformance.AddMiddle_LinkedList3(); // 454 ms
Environment.Exit(-1);
}
代码是:
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace stackoverflow
{
static class LinkedListPerformance
{
class Temp
{
public decimal A, B, C, D;
public Temp(decimal a, decimal b, decimal c, decimal d)
{
A = a; B = b; C = c; D = d;
}
}
static readonly int start = 0;
static readonly int end = 123456;
static readonly IEnumerable<Temp> query = Enumerable.Range(start, end - start).Select(temp);
static Temp temp(int i)
{
return new Temp(i, i, i, i);
}
static void StopAndPrint(this Stopwatch watch)
{
watch.Stop();
Console.WriteLine(watch.Elapsed.TotalMilliseconds);
}
public static void AddFirst_List()
{
var list = new List<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
list.Insert(0, temp(i));
watch.StopAndPrint();
}
public static void AddFirst_LinkedList()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (int i = start; i < end; i++)
list.AddFirst(temp(i));
watch.StopAndPrint();
}
public static void AddLast_List()
{
var list = new List<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
list.Add(temp(i));
watch.StopAndPrint();
}
public static void AddLast_LinkedList()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (int i = start; i < end; i++)
list.AddLast(temp(i));
watch.StopAndPrint();
}
public static void Enumerate_List()
{
var list = new List<Temp>(query);
var watch = Stopwatch.StartNew();
foreach (var item in list)
{
}
watch.StopAndPrint();
}
public static void Enumerate_LinkedList()
{
var list = new LinkedList<Temp>(query);
var watch = Stopwatch.StartNew();
foreach (var item in list)
{
}
watch.StopAndPrint();
}
//for the fun of it, I tried to time inserting to the middle of
//linked list - this is by no means a realistic scenario! or may be
//these make sense if you assume you have the reference to middle node
//insertion to the middle of list
public static void AddMiddle_List()
{
var list = new List<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
list.Insert(list.Count / 2, temp(i));
watch.StopAndPrint();
}
//insertion in linked list in such a fashion that
//it has the same effect as inserting into the middle of list
public static void AddMiddle_LinkedList1()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
LinkedListNode<Temp> evenNode = null, oddNode = null;
for (int i = start; i < end; i++)
{
if (list.Count == 0)
oddNode = evenNode = list.AddLast(temp(i));
else
if (list.Count % 2 == 1)
oddNode = list.AddBefore(evenNode, temp(i));
else
evenNode = list.AddAfter(oddNode, temp(i));
}
watch.StopAndPrint();
}
//another hacky way
public static void AddMiddle_LinkedList2()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start + 1; i < end; i += 2)
list.AddLast(temp(i));
for (int i = end - 2; i >= 0; i -= 2)
list.AddLast(temp(i));
watch.StopAndPrint();
}
//OP's original more sensible approach, but I tried to filter out
//the intermediate iteration cost in finding the middle node.
public static void AddMiddle_LinkedList3()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
{
if (list.Count == 0)
list.AddLast(temp(i));
else
{
watch.Stop();
var curNode = list.First;
for (var j = 0; j < list.Count / 2; j++)
curNode = curNode.Next;
watch.Start();
list.AddBefore(curNode, temp(i));
}
}
watch.StopAndPrint();
}
}
}
你可以看到结果与其他人在这里记录的理论性能是一致的。很清楚- LinkedList<T>在插入的情况下获得了很大的时间。我还没有测试从列表中间删除,但结果应该是相同的。当然,List<T>在其他方面表现得更好,比如O(1)随机访问。
使用LinkedList的常见情况是这样的:
假设您想要从一个字符串列表中删除许多特定的字符串,这些字符串的大小很大,比如100,000。要删除的字符串可以在HashSet dic中查找,字符串列表中应该包含30,000到60,000个这样的需要删除的字符串。
那么用于存储100,000个字符串的列表的最佳类型是什么?答案是LinkedList。如果它们存储在数组列表中,则遍历它并删除匹配的字符串将占用 到数十亿次操作,而使用迭代器和remove()方法只需要大约100,000次操作。
LinkedList<String> strings = readStrings();
HashSet<String> dic = readDic();
Iterator<String> iterator = strings.iterator();
while (iterator.hasNext()){
String string = iterator.next();
if (dic.contains(string))
iterator.remove();
}
推荐文章
- 实体框架核心:在上一个操作完成之前,在此上下文中开始的第二个操作
- 如何为构造函数定制Visual Studio的私有字段生成快捷方式?
- 为什么Visual Studio 2015/2017/2019测试运行器没有发现我的xUnit v2测试
- 如何使用JSON确保字符串是有效的JSON。网
- AppSettings从.config文件中获取值
- 通过HttpClient向REST API发布一个空体
- 如何检查IEnumerable是否为空或空?
- 自动化invokerrequired代码模式
- 没有ListBox。SelectionMode="None",是否有其他方法禁用列表框中的选择?
- 在c#代码中设置WPF文本框的背景颜色
- 在c#中,什么是单子?
- c#和Java中的泛型有什么不同?和模板在c++ ?
- c#线程安全快速(est)计数器
- HyperLogLog算法是如何工作的?
- 如何将此foreach代码转换为Parallel.ForEach?