什么时候使用List和LinkedList更好?
当前回答
Edit
请阅读对这个答案的评论。人们说我没有 适当的测试。我同意这不应该是一个可以接受的答案。就像我一样 我做了一些测试,想和大家分享。
最初的回答…
我发现了有趣的结果:
// Temporary class to show the example
class Temp
{
public decimal A, B, C, D;
public Temp(decimal a, decimal b, decimal c, decimal d)
{
A = a; B = b; C = c; D = d;
}
}
链表(3.9秒)
LinkedList<Temp> list = new LinkedList<Temp>();
for (var i = 0; i < 12345678; i++)
{
var a = new Temp(i, i, i, i);
list.AddLast(a);
}
decimal sum = 0;
foreach (var item in list)
sum += item.A;
列表(2.4秒)
List<Temp> list = new List<Temp>(); // 2.4 seconds
for (var i = 0; i < 12345678; i++)
{
var a = new Temp(i, i, i, i);
list.Add(a);
}
decimal sum = 0;
foreach (var item in list)
sum += item.A;
即使你只是访问数据,本质上也要慢得多!!我说永远不要使用linkedList。
下面是另一个执行大量插入的比较(我们计划在列表中间插入一个项)
链表(51秒)
LinkedList<Temp> list = new LinkedList<Temp>();
for (var i = 0; i < 123456; i++)
{
var a = new Temp(i, i, i, i);
list.AddLast(a);
var curNode = list.First;
for (var k = 0; k < i/2; k++) // In order to insert a node at the middle of the list we need to find it
curNode = curNode.Next;
list.AddAfter(curNode, a); // Insert it after
}
decimal sum = 0;
foreach (var item in list)
sum += item.A;
榜单(7.26秒)
List<Temp> list = new List<Temp>();
for (var i = 0; i < 123456; i++)
{
var a = new Temp(i, i, i, i);
list.Insert(i / 2, a);
}
decimal sum = 0;
foreach (var item in list)
sum += item.A;
有插入位置引用的链表(。04秒)
list.AddLast(new Temp(1,1,1,1));
var referenceNode = list.First;
for (var i = 0; i < 123456; i++)
{
var a = new Temp(i, i, i, i);
list.AddLast(a);
list.AddBefore(referenceNode, a);
}
decimal sum = 0;
foreach (var item in list)
sum += item.A;
因此,只有当你计划插入几个项目,并且你也在某个地方有你计划插入项目的引用时,才使用链表。只是因为你必须插入很多项,这并不会使它更快,因为搜索你想要插入的位置需要时间。
其他回答
将链表视为列表可能会有一些误导。它更像一个链条。事实上,在。net中,LinkedList<T>甚至没有实现IList<T>。在链表中没有真正的索引概念,即使看起来有。当然,类中提供的方法都不接受索引。
链表可以是单链,也可以是双链。这是指链中的每个元素是否只与下一个元素有链接(单链),还是与前一个/下一个元素都有链接(双链)。LinkedList<T>是双重链接。
在内部,List<T>由一个数组支持。这在内存中提供了一个非常紧凑的表示。相反,LinkedList<T>涉及额外的内存来存储连续元素之间的双向链接。因此LinkedList<T>的内存占用通常会比List<T>的内存占用大(需要注意的是,List<T>可以有未使用的内部数组元素,以提高追加操作期间的性能)。
它们也有不同的表现特征:
附加
LinkedList<T>.AddLast(item)常量时间 List<T>.Add(item)平摊常数时间,线性最坏情况
预谋
LinkedList<T>.AddFirst(item)常量时间 列表> < T。插入(0,项)线性时间
插入
LinkedList < T >。AddBefore(节点,项目)常量时间 LinkedList < T >。AddAfter(节点,项目)常量时间 列表> < T。插入(索引、项)线性时间
删除
删除(项目)线性时间 删除(节点)常量时间 列表<T>.删除(项目)线性时间 List<T>.RemoveAt(index)线性时间
数
LinkedList < T >。计算常数时间 列表> < T。计算常数时间
包含
包含(项目)线性时间 列表<T>.包含(项)线性时间
清晰的
LinkedList<T>.Clear()线性时间 List<T>.Clear()线性时间
如你所见,它们基本上是相等的。实际上,LinkedList<T>的API使用起来更麻烦,其内部需求的细节会泄漏到代码中。
然而,如果你需要在一个列表中做很多插入/删除,它提供了常数时间。List<T>提供线性时间,因为列表中的额外项必须在插入/删除之后重新排列。
这是改编自Tono Nam的公认的答案,纠正了一些错误的测量。
测试:
static void Main()
{
LinkedListPerformance.AddFirst_List(); // 12028 ms
LinkedListPerformance.AddFirst_LinkedList(); // 33 ms
LinkedListPerformance.AddLast_List(); // 33 ms
LinkedListPerformance.AddLast_LinkedList(); // 32 ms
LinkedListPerformance.Enumerate_List(); // 1.08 ms
LinkedListPerformance.Enumerate_LinkedList(); // 3.4 ms
//I tried below as fun exercise - not very meaningful, see code
//sort of equivalent to insertion when having the reference to middle node
LinkedListPerformance.AddMiddle_List(); // 5724 ms
LinkedListPerformance.AddMiddle_LinkedList1(); // 36 ms
LinkedListPerformance.AddMiddle_LinkedList2(); // 32 ms
LinkedListPerformance.AddMiddle_LinkedList3(); // 454 ms
Environment.Exit(-1);
}
代码是:
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace stackoverflow
{
static class LinkedListPerformance
{
class Temp
{
public decimal A, B, C, D;
public Temp(decimal a, decimal b, decimal c, decimal d)
{
A = a; B = b; C = c; D = d;
}
}
static readonly int start = 0;
static readonly int end = 123456;
static readonly IEnumerable<Temp> query = Enumerable.Range(start, end - start).Select(temp);
static Temp temp(int i)
{
return new Temp(i, i, i, i);
}
static void StopAndPrint(this Stopwatch watch)
{
watch.Stop();
Console.WriteLine(watch.Elapsed.TotalMilliseconds);
}
public static void AddFirst_List()
{
var list = new List<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
list.Insert(0, temp(i));
watch.StopAndPrint();
}
public static void AddFirst_LinkedList()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (int i = start; i < end; i++)
list.AddFirst(temp(i));
watch.StopAndPrint();
}
public static void AddLast_List()
{
var list = new List<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
list.Add(temp(i));
watch.StopAndPrint();
}
public static void AddLast_LinkedList()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (int i = start; i < end; i++)
list.AddLast(temp(i));
watch.StopAndPrint();
}
public static void Enumerate_List()
{
var list = new List<Temp>(query);
var watch = Stopwatch.StartNew();
foreach (var item in list)
{
}
watch.StopAndPrint();
}
public static void Enumerate_LinkedList()
{
var list = new LinkedList<Temp>(query);
var watch = Stopwatch.StartNew();
foreach (var item in list)
{
}
watch.StopAndPrint();
}
//for the fun of it, I tried to time inserting to the middle of
//linked list - this is by no means a realistic scenario! or may be
//these make sense if you assume you have the reference to middle node
//insertion to the middle of list
public static void AddMiddle_List()
{
var list = new List<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
list.Insert(list.Count / 2, temp(i));
watch.StopAndPrint();
}
//insertion in linked list in such a fashion that
//it has the same effect as inserting into the middle of list
public static void AddMiddle_LinkedList1()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
LinkedListNode<Temp> evenNode = null, oddNode = null;
for (int i = start; i < end; i++)
{
if (list.Count == 0)
oddNode = evenNode = list.AddLast(temp(i));
else
if (list.Count % 2 == 1)
oddNode = list.AddBefore(evenNode, temp(i));
else
evenNode = list.AddAfter(oddNode, temp(i));
}
watch.StopAndPrint();
}
//another hacky way
public static void AddMiddle_LinkedList2()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start + 1; i < end; i += 2)
list.AddLast(temp(i));
for (int i = end - 2; i >= 0; i -= 2)
list.AddLast(temp(i));
watch.StopAndPrint();
}
//OP's original more sensible approach, but I tried to filter out
//the intermediate iteration cost in finding the middle node.
public static void AddMiddle_LinkedList3()
{
var list = new LinkedList<Temp>();
var watch = Stopwatch.StartNew();
for (var i = start; i < end; i++)
{
if (list.Count == 0)
list.AddLast(temp(i));
else
{
watch.Stop();
var curNode = list.First;
for (var j = 0; j < list.Count / 2; j++)
curNode = curNode.Next;
watch.Start();
list.AddBefore(curNode, temp(i));
}
}
watch.StopAndPrint();
}
}
}
你可以看到结果与其他人在这里记录的理论性能是一致的。很清楚- LinkedList<T>在插入的情况下获得了很大的时间。我还没有测试从列表中间删除,但结果应该是相同的。当然,List<T>在其他方面表现得更好,比如O(1)随机访问。
在. net中,列表被表示为数组。因此,与LinkedList相比,使用普通List会更快。这就是为什么上面的人看到他们看到的结果。
Why should you use the List? I would say it depends. List creates 4 elements if you don't have any specified. The moment you exceed this limit, it copies stuff to a new array, leaving the old one in the hands of the garbage collector. It then doubles the size. In this case, it creates a new array with 8 elements. Imagine having a list with 1 million elements, and you add 1 more. It will essentially create a whole new array with double the size you need. The new array would be with 2Mil capacity however, you only needed 1Mil and 1. Essentially leaving stuff behind in GEN2 for the garbage collector and so on. So it can actually end up being a huge bottleneck. You should be careful about that.
我问了一个类似的关于LinkedList集合性能的问题,发现Steven Cleary的Deque c#实现是一个解决方案。与Queue集合不同,Deque允许前后移动项目。它类似于链表,但性能有所改进。
本质上,. net中的List<>是数组的包装器。LinkedList<>是一个链表。所以问题归结为,数组和链表之间的区别是什么,以及什么时候应该使用数组而不是链表。可能在你决定使用哪个时最重要的两个因素可以归结为:
Linked lists have much better insertion/removal performance, so long as the insertions/removals are not on the last element in the collection. This is because an array must shift all remaining elements that come after the insertion/removal point. If the insertion/removal is at the tail end of the list however, this shift is not needed (although the array may need to be resized, if its capacity is exceeded). Arrays have much better accessing capabilities. Arrays can be indexed into directly (in constant time). Linked lists must be traversed (linear time).