我开始使用python,我尝试使用一个二维列表,我开始在每个地方都用相同的变量填充。我想到了这个:

def initialize_twodlist(foo):
    twod_list = []
    new = []
    for i in range (0, 10):
        for j in range (0, 10):
            new.append(foo)
        twod_list.append(new)
        new = []

它给出了预期的结果,但感觉像是一种变通方法。有更简单/更短/更优雅的方法吗?


当前回答

你可以这样做:

[[element] * numcols] * numrows

例如:

>>> [['a'] *3] * 2
[['a', 'a', 'a'], ['a', 'a', 'a']]

但这有一个不受欢迎的副作用:

>>> b = [['a']*3]*3
>>> b
[['a', 'a', 'a'], ['a', 'a', 'a'], ['a', 'a', 'a']]
>>> b[1][1]
'a'
>>> b[1][1] = 'b'
>>> b
[['a', 'b', 'a'], ['a', 'b', 'a'], ['a', 'b', 'a']]

其他回答

这里有一个更简单的方法:

import numpy as np
twoD = np.array([[]*m]*n)

要初始化所有带有任何'x'值的单元格,请使用:

twoD = np.array([[x]*m]*n
t = [ [0]*10 for i in [0]*10]

对于每个元素将创建一个新的[0]*10。

添加维度的一般模式可以从这个系列中得出:

x = 0
mat1 = []
for i in range(3):
    mat1.append(x)
    x+=1
print(mat1)


x=0
mat2 = []
for i in range(3):
    tmp = []
    for j in range(4):
        tmp.append(x)
        x+=1
    mat2.append(tmp)

print(mat2)


x=0
mat3 = []
for i in range(3):
    tmp = []
    for j in range(4):
        tmp2 = []
        for k in range(5):
            tmp2.append(x)
            x+=1
        tmp.append(tmp2)
    mat3.append(tmp)

print(mat3)

对于那些困惑为什么[["]*m]*n不好用的人。

最好的方法是[[" for i in range(columns)] for j in range(rows)] 这将解决所有问题。

如需进一步澄清 例子:

>>> x = [['']*3]*3
[['', '', ''], ['', '', ''], ['', '', '']]
>>> x[0][0] = 1
>>> print(x)
[[1, '', ''], [1, '', ''], [1, '', '']]
>>> y = [['' for i in range(3)] for j in range(3)]
[['', '', ''], ['', '', ''], ['', '', '']]
>>> y[0][0]=1
>>> print(y)
[[1, '', ''], ['', '', ''], ['', '', '']]
row=5
col=5
[[x]*col for x in [b for b in range(row)]]

上面会给你一个5x5的2D数组

[[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]]

它使用嵌套的列表推导式。 分类如下:

[[x]*col for x in [b for b in range(row)]]

[x]*col——>被求值的最终表达式 对于——>中的x, x将是迭代器提供的值 [b for b in range(row)]]——>迭代器。

[b for b in range(row)]]这将计算为[0,1,2,3,4],因为row=5 现在化简为

[[x]*col for x in [0,1,2,3,4]]

它的值是 [[0]*5 for x in[0,1,2,3,4]]——> with x=0第一次迭代 [[1]*5 for x in[0,1,2,3,4]]——> with x=1第二次迭代 [[2]*5 for x in[0,1,2,3,4]]——> with x=2第三次迭代 [[3]*5 for x in[0,1,2,3,4]]——> with x=3第四次迭代 [[4]*5 for x in[0,1,2,3,4]]——> with x=4第五次迭代