我开始使用python,我尝试使用一个二维列表,我开始在每个地方都用相同的变量填充。我想到了这个:

def initialize_twodlist(foo):
    twod_list = []
    new = []
    for i in range (0, 10):
        for j in range (0, 10):
            new.append(foo)
        twod_list.append(new)
        new = []

它给出了预期的结果,但感觉像是一种变通方法。有更简单/更短/更优雅的方法吗?


当前回答

from random import randint
l = []

for i in range(10):
    k=[]
    for j in range(10):
        a= randint(1,100)
        k.append(a)

    l.append(k)




print(l)
print(max(l[2]))

b = []
for i in range(10):
    a = l[i][5]
    b.append(a)

print(min(b))

其他回答

代码:

num_rows, num_cols = 4, 2
initial_val = 0
matrix = [[initial_val] * num_cols for _ in range(num_rows)]
print(matrix) 
# [[0, 0], [0, 0], [0, 0], [0, 0]]

Initial_val必须是不可变的。

正如@Arnab和@Mike指出的,数组不是列表。不同之处在于:1)数组在初始化时是固定大小的;2)数组通常支持比列表更少的操作。

也许在大多数情况下有点多余,但这里有一个基本的2d数组实现,它利用python ctypes(c库)实现硬件数组。

import ctypes
class Array:
    def __init__(self,size,foo): #foo is the initial value
        self._size = size
        ArrayType = ctypes.py_object * size
        self._array = ArrayType()
        for i in range(size):
            self._array[i] = foo
    def __getitem__(self,index):
        return self._array[index]
    def __setitem__(self,index,value):
        self._array[index] = value
    def __len__(self):
        return self._size

class TwoDArray:
    def __init__(self,columns,rows,foo):
        self._2dArray = Array(rows,foo)
        for i in range(rows):
            self._2dArray[i] = Array(columns,foo)

    def numRows(self):
        return len(self._2dArray)
    def numCols(self):
        return len((self._2dArray)[0])
    def __getitem__(self,indexTuple):
        row = indexTuple[0]
        col = indexTuple[1]
        assert row >= 0 and row < self.numRows() \
               and col >=0 and col < self.numCols(),\
               "Array script out of range"
        return ((self._2dArray)[row])[col]

if(__name__ == "__main__"):
    twodArray = TwoDArray(4,5,5)#sample input
    print(twodArray[2,3])

这种方式比嵌套的列表推导更快

[x[:] for x in [[foo] * 10] * 10]    # for immutable foo!

下面是一些python3计时,用于小型和大型列表

$python3 -m timeit '[x[:] for x in [[1] * 10] * 10]'
1000000 loops, best of 3: 1.55 usec per loop

$ python3 -m timeit '[[1 for i in range(10)] for j in range(10)]'
100000 loops, best of 3: 6.44 usec per loop

$ python3 -m timeit '[x[:] for x in [[1] * 1000] * 1000]'
100 loops, best of 3: 5.5 msec per loop

$ python3 -m timeit '[[1 for i in range(1000)] for j in range(1000)]'
10 loops, best of 3: 27 msec per loop

解释:

[[foo]*10]*10创建重复10次的相同对象的列表。您不能只使用这个,因为修改一个元素将修改每行中的同一元素!

x[:]等价于list(x),但更有效一点,因为它避免了名称查找。无论哪种方式,它都创建了每行的浅拷贝,所以现在所有元素都是独立的。

所有的元素都是相同的foo对象,所以如果foo是可变的,你就不能使用这个方案。,你必须使用

import copy
[[copy.deepcopy(foo) for x in range(10)] for y in range(10)]

或者假设一个类(或函数)Foo返回Foo

[[Foo() for x in range(10)] for y in range(10)]

错误方式:[[None*m]*n]

>>> m, n = map(int, raw_input().split())
5 5
>>> x[0][0] = 34
>>> x
[[34, None, None, None, None], [34, None, None, None, None], [34, None, None, None, None], [34, None, None, None, None], [34, None, None, None, None]]
>>> id(x[0][0])
140416461589776
>>> id(x[3][0])
140416461589776

使用这种方法,python不允许为外层列创建不同的地址空间,这将导致各种超出您预期的错误行为。

正确方法,但有例外:

y = [[0 for i in range(m)] for j in range(n)]
>>> id(y[0][0]) == id(y[1][0])
False

这是一个很好的方法,但如果您将默认值设置为None,则会有例外

>>> r = [[None for i in range(5)] for j in range(5)]
>>> r
[[None, None, None, None, None], [None, None, None, None, None], [None, None, None, None, None], [None, None, None, None, None], [None, None, None, None, None]]
>>> id(r[0][0]) == id(r[2][0])
True

因此,使用这种方法正确地设置默认值。

绝对正确的:

跟着麦克风的双循环回复。

添加维度的一般模式可以从这个系列中得出:

x = 0
mat1 = []
for i in range(3):
    mat1.append(x)
    x+=1
print(mat1)


x=0
mat2 = []
for i in range(3):
    tmp = []
    for j in range(4):
        tmp.append(x)
        x+=1
    mat2.append(tmp)

print(mat2)


x=0
mat3 = []
for i in range(3):
    tmp = []
    for j in range(4):
        tmp2 = []
        for k in range(5):
            tmp2.append(x)
            x+=1
        tmp.append(tmp2)
    mat3.append(tmp)

print(mat3)