我试图弄清楚如何同时添加多个列的熊猫与熊猫。我希望在一个步骤中做到这一点,而不是重复多个步骤。
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3] # I thought this would work here...
只是想指出@Matthias Fripp回答中的选项2
(2)我并不一定期望DataFrame以这种方式工作,但它确实如此
df[[‘column_new_1’,‘column_new_2’,‘column_new_3]] = pd.DataFrame ([[np。Nan, 'dogs', 3]], index=df.index)
熊猫自己的文档中已经有记录了吗
http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics
您可以将列列表传递给[]以按此顺序选择列。
如果数据帧中不包含列,则会引发异常。
也可以通过这种方式设置多个列。
您可能会发现这对于将转换(就地)应用到列的子集很有用。
我不习惯使用“Index”等等。可以如下所示
df.columns
Index(['A123', 'B123'], dtype='object')
df=pd.concat([df,pd.DataFrame(columns=list('CDE'))])
df.rename(columns={
'C':'C123',
'D':'D123',
'E':'E123'
},inplace=True)
df.columns
Index(['A123', 'B123', 'C123', 'D123', 'E123'], dtype='object')