我试图弄清楚如何同时添加多个列的熊猫与熊猫。我希望在一个步骤中做到这一点,而不是重复多个步骤。

import pandas as pd

df = {'col_1': [0, 1, 2, 3],
        'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)

df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3]  # I thought this would work here...

当前回答

如果用相同的值添加很多缺失的列(a, b, c,....),这里是0,我这样做:

    new_cols = ["a", "b", "c" ] 
    df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)

这是基于公认答案的第二种变体。

其他回答

我不习惯使用“Index”等等。可以如下所示

df.columns
Index(['A123', 'B123'], dtype='object')

df=pd.concat([df,pd.DataFrame(columns=list('CDE'))])

df.rename(columns={
    'C':'C123',
    'D':'D123',
    'E':'E123'
},inplace=True)


df.columns
Index(['A123', 'B123', 'C123', 'D123', 'E123'], dtype='object')

使用.assign()映射字典:

这是在处理多个列时用值分配新列的最具可读性和最动态的方式。

import pandas as pd
import numpy as np

new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [np.nan, "dogs", 3]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)

如果你只是想把新列的值初始化为空,因为你不知道这些值会是什么,或者你有很多新列。

import pandas as pd
import numpy as np

new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [None for item in new_cols]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)

如果用相同的值添加很多缺失的列(a, b, c,....),这里是0,我这样做:

    new_cols = ["a", "b", "c" ] 
    df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)

这是基于公认答案的第二种变体。

你可以实例化一个字典的值,如果你想为每一列不同的值&你不介意在行之前创建一个字典。

>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame({
  'col_1': [0, 1, 2, 3], 
  'col_2': [4, 5, 6, 7]
})
>>> df
   col_1  col_2
0      0      4
1      1      5
2      2      6
3      3      7
>>> cols = {
  'column_new_1':np.nan,
  'column_new_2':'dogs',
  'column_new_3': 3
}
>>> df[list(cols)] = pd.DataFrame(data={k:[v]*len(df) for k,v in cols.items()})
>>> df
   col_1  col_2  column_new_1 column_new_2  column_new_3
0      0      4           NaN         dogs             3
1      1      5           NaN         dogs             3
2      2      6           NaN         dogs             3
3      3      7           NaN         dogs             3

不一定比公认的答案更好,但这是另一种尚未列出的方法。

只是想指出@Matthias Fripp回答中的选项2

(2)我并不一定期望DataFrame以这种方式工作,但它确实如此 df[[‘column_new_1’,‘column_new_2’,‘column_new_3]] = pd.DataFrame ([[np。Nan, 'dogs', 3]], index=df.index)

熊猫自己的文档中已经有记录了吗 http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics

您可以将列列表传递给[]以按此顺序选择列。 如果数据帧中不包含列,则会引发异常。 也可以通过这种方式设置多个列。 您可能会发现这对于将转换(就地)应用到列的子集很有用。